
1. Introduction
Cumulus convection is a key process in tropical climate dynamics and plays a crucial role in transporting and 
redistributing momentum, heat and moisture in the atmosphere. It is a complex process that involves a multi-
tude of time and spatial scales. In general circulation models (GCMs), the impact of unresolved convective 
processes on resolved scales is accomplished through parameterization. Despite great strides in recent years (Rio 
et  al.,  2019; Villalba-Pradas & Tapiador,  2022), convective parameterization remains an important source of 
uncertainty in GCMs (Stephens et al., 2010; Stevens & Bony, 2013).

Two structural assumptions commonly applied in convection schemes and relevant to the present study are 
the diagnostic and quasi-equilibrium assumptions. The former states that convective activity at any given 
instant can be determined using solely the resolved grid-scale variables at that instant via an unspecified func-
tion (typically different in different schemes) and that there is no conditional dependence of convection on 
its own history beyond that projected by the resolved variables. The latter assumes that convective instability 
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generated by slowly-evolving large-scale forcing is quickly consumed by fast-acting convective processes and is 
commonly  used as a closure assumption in convection schemes (Arakawa & Schubert, 1974; Yanai et al., 1973; 
Yano & Plant, 2012). However, both assumptions do not fully capture what happens in reality because convec-
tion takes a finite time to adjust to large-scale forcing (Arakawa & Schubert, 1974; Pan & Randall, 1998), and 
is affected by pre-existing convection (Davies et al., 2009, 2013). The fact that convection has inertia, can feel 
the influence of its own activity at an earlier time, and is modified by it, is termed the “memory” of convection 
(Davies et al., 2009). Its parameterization is the focus of this study.

It is important to differentiate between two types of memory that have been identified in cloud-resolving model 
(CRM) studies: macro- and microstate memories (Colin et al., 2019, henceforth C19). We refer to the memory 
effects arising from a changing large-scale (“macrostate”) environment as “macrostate memory.” In the context 
of parameterization, it represents the impact of processes that affect the mean profiles of a single GCM grid cell 
over a finite time, relaxing the quasi-equilibrium assumption. It is commonly taken into account in convection 
schemes via a finite “adjustment time scale” of 1–5 hr (Bechtold et al., 2008; Cohen & Craig, 2004; Kain, 2004; 
Xu & Randall,  1998). In this study we are interested in another memory, which emerges due to small-scale 
(“microstate”) structures or heterogeneities within a GCM grid box (or within a CRM domain), and is produced 
by but also promotes convection, the so-called “microstate memory” (C19). These structures could arise as a 
consequence of individual clouds changing their surroundings during their lifespans and manifest themselves 
as remnants of past convective activity influencing the development of convection at the present time (Davies 
et al., 2009, 2013). This type of memory arises from subgrid-scale processes that remain unresolved in GCMs 
(but resolved in CRMs) and must therefore be parameterized. To avoid confusion, memory refers to microstate 
memory in the present study. Although they resolve subgrid-scale processes better than GCMs, the manifestation 
of memory may vary between CRMs. Convective memory has been shown to be strongly associated with convec-
tive organization (C19; Davies, 2008; Moseley et  al.,  2016), and the degree of organization displayed across 
different CRMs is far from uniform (Wing et al., 2020). Within a single CRM, convective organization has been 
found to be sensitive to domain size and horizontal resolution (Muller & Held, 2012; Yanase et al., 2020), but 
this dependence disappears when rain evaporation is removed in the boundary layer (Jeevanjee & Romps, 2013; 
Muller & Bony, 2015). Nonetheless, CRMs display more consistency in their organization behavior compared 
to GCMs (Wing et al., 2020), and hence their memory behavior can also be expected to be more accurate than 
parameterized convection.

Multiple CRM studies have shown that memory mainly resides in low-level thermodynamic inhomogeneities. 
These studies involve simulations conducted under radiative-convective equilibrium (RCE) conditions (a statisti-
cal equilibrium state of the atmosphere where radiative cooling is balanced by convective heating, reminiscent of 
conditions in the tropical atmosphere over ocean) (C19; Davies et al., 2013), as well as more realistic scenarios 
with an imposed diurnal cycle (Daleu et al., 2020). Two of these CRM studies are relevant to our analysis. To 
identify memory and its effects, C19 imposed an instantaneous homogenization of the microstate structures 
(setting a given subset of prognostic variables to their domain-averaged values) and observed how convective 
activity (precipitation) recovered after this homogenization. They found that memory is predominantly contrib-
uted by the water vapor and temperature microstructures (variability) in the subcloud layer compared to winds 
and hydrometeors. A longer recovery time scale was observed when convection is organized (>24 hr) than when 
disorganized (2–3 hr). A follow-up study by Colin and Sherwood (2021, henceforth CS21) explored the memory 
behavior of a CRM when the macrostate is held fixed to its equilibrium mean state (“strong-nudging” experi-
ment). In this case convection displays a volatile behavior, with precipitation either growing exponentially to an 
unrealistically large value or decaying to zero. Additionally, the authors presented a two-variable, predator-prey 
(PP) model that was able to capture this instability, as well as the CRM behavior in C19's homogenization exper-
iment. Further description of the PP model is presented in Section 3.3.

In CRM simulations, physical mechanisms that contribute to the spatial variance of the vertically integrated 
moist static energy (MSE) have been found to be strongly correlated with convective organization (Wing & 
Emanuel, 2014) and hence memory (C19). There are many such processes but we focus on one that is of particu-
lar importance to the present study: the evaporation of rain. By injecting cooler and drier air into the boundary 
layer, which is then preferentially excluded from convective updrafts, rain evaporation increases the horizontal 
variation in the planetary boundary layer (PBL) thermodynamic conditions. Indeed, myriad CRM studies have 
found rain evaporation to impact convective organization under idealized RCE (Holloway & Woolnough, 2016; 
Jeevanjee & Romps, 2013; Muller & Bony, 2015) as well as more realistic conditions (Holloway, 2017). Cold 
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pools produced by the evaporation of rain are also well-known to have a profound impact on convective organi-
zation by influencing the thermodynamic stability of the PBL (Tompkins, 2001; Torri & Kuang, 2016; Zuidema 
et  al.,  2017) and playing a crucial role in the dynamic triggering of convection (Haerter et  al.,  2019; Torri 
et al., 2015). Despite the knowledge gained from CRM experiments it remains unclear how memory should be 
parameterized, and a wide range of approaches have been attempted. These include the introduction of prognostic 
variables that influence the evolution of various scheme calculations such as entrainment (Mapes & Neale, 2011, 
henceforth MN11), closure formulation (Pan & Randall,  1998; Randall & Pan,  1993), updraft area fraction 
(Gerard et al., 2009), updraft and downdraft (Tan et al., 2018), convective vertical velocity (Guérémy, 2011), 
microphysics (Piriou et al., 2007); the explicit modeling of physical processes such as cold pools (Del Genio 
et al., 2015; Grandpeix & Lafore, 2010; Park, 2014a, 2014b; Qian et al., 1998; Rooney et al., 2022), cloud lifecy-
cles (Sakradzija et al., 2015, 2016), evolution of thermal clusters (Neggers & Griewank, 2021, 2022); the use of 
Markov chains (Hagos et al., 2018; Khouider et al., 2010; Peters et al., 2013) and cellular automata (Bengtsson 
et  al.,  2013,  2021); the adoption of machine learning algorithms such as convolutional and recurrent neural 
networks to capture temporal dependencies (Caseri et al., 2022; Y. Han et al., 2020; Shamekh et al., 2023); and 
embedding CRM in GCM grid cells through super-parameterization (Khairoutdinov et al., 2005; Khairoutdinov 
& Randall, 2001; Pritchard et al., 2011). Given the immense diversity in memory parameterizations, we deem it 
an important task to design tests in a simple and intuitive framework to probe the behavior and potentially reveal 
the shortcomings of current schemes. It is therefore the goal of this paper to examine two convection schemes 
with memory using two idealized tests.

The first convection scheme that we tested is the UW-org scheme, which we briefly describe here and refer to 
MN11 for in-depth details. The scheme is based on the University of Washington (UW) shallow convection 
scheme implemented in the Community Atmosphere Model (CAM5), which is a single-plume mass flux scheme 
(Park & Bretherton, 2009). The modified UW-org scheme is conceptualized as a unified (shallow and deep) 
scheme. Memory is parameterized via the introduction of a new prognostic org variable meant to capture the 
effects of subgrid-scale structures on convective processes such as entrainment rate and closure. In particular, 
entrainment rate has been found to have an impact on convective organization, and vice versa (Becker et al., 2018; 
Tompkins & Semie, 2017). To be clear, although the variable org can be expected to represent certain aspects 
of convective organization, it is not necessarily so and should be more accurately interpreted as a representation 
of heterogeneities in the MSE fields that could contribute to positive feedback on the development of convec-
tion, and hence to memory. While an arbitrary number of plumes can be computed, the current implementa-
tion contains only two plumes that are computed sequentially, and whose mass fluxes and area coverages are 
combined to determine the total precipitation and other convective tendencies. Entrainment rates and plume base 
conditions (temperature and humidity) may differ between the plumes, and thus may also the heights the plumes 
reach. Org is a 2D, dimensionless variable whose prognostic equation is given by

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
= 𝑆𝑆 −

(𝑜𝑜𝑜𝑜𝑜𝑜)

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜
 (1)

where S is the source of org (defined as the mass-weighted vertically integrated rain evaporation rate in kg m −2 s −1 
times evap2org, an adjustable parameter) and τorg its characteristic time scale. Following MN11, we set evap2org 
to 2 m 2 kg −1 and τorg to 10 ks (∼3 hr). We elaborate further on the effects of org on entrainment rate and closure 
in Section 2.2.

The second scheme we tested is the cold pool (CP) scheme in the Laboratoire de Météorologie Dynamique 
Zoom (LMDZ) model (Grandpeix & Lafore,  2010), the atmospheric component of the Institut Pierre-Simon 
Laplace model. This scheme represents spreading circular cold pools fed by precipitation evaporation in unsatu-
rated downdrafts. Their dynamics follows that of a density current: they convert gravitational potential energy 
into kinetic energy. These cold pools impact convection in three ways. First, their negative buoyancy provides 
energy to trigger deep convection via mechanical lifting. Second, cold pool edges act as gust fronts and provide 
power for the convective closure via an Available Lifting Power (ALP), which is proportional to total cold pool 
perimeter and increases with cold pool spread speed. Third, cold pools create two subgrid-scale environments: 
the colder cold pool environment seen by downdrafts, and the warmer exterior seen by updrafts in the convec-
tion scheme. The cold pools are prognostic, and their memory comes from their density current properties. The 
prognostic memory variables are the cold pool temperature and humidity anomalies, as well as the total cold 
pool surface area. A summary of the main cold pool governing equations is presented in Grandpeix et al. (2010).
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The overarching goal of this study is to examine and improve understanding of the memory behavior of the 
UW-org and LMDZ-CP schemes by using a single-column model (SCM) setup under RCE conditions and 
comparing their responses to those of previously published CRM RCE results (C19 and CS21). The specific 
research questions addressed are:

1.  How do convection schemes respond when we fix the large-scale environment, that is, disable the feedback 
between micro- and macrostates?

2.  How do convection schemes respond when we homogenize their microstate structures carrying memory?
3.  How do their above responses compare to those of (a) schemes with no microstate memory, and (b) a CRM 

where convection is resolved?

There is a long tradition of using SCMs to evaluate the performance of physics parameterization by comparing 
their results to those of CRMs or large-eddy simulations, commonly by prescribing both models with large-scale 
forcings derived from GCM outputs or observations (e.g., Bretherton, McCaa, & Grenier, 2004; Dal Gesso & 
Neggers,  2018; Gettelman et  al.,  2019; Rio et  al.,  2010). The obvious caveat of using SCMs in this way is 
the absence of feedback between model physics and large-scale circulations, which limits the interpretation of 
results, given that convection schemes are coupled to model dynamics in 3D simulations. Under RCE conditions, 
however, there is no lateral energy transport and large-scale vertical motion is assumed to be zero, hence remov-
ing the need for imposed large-scale dynamics. By isolating the effects of model physics, SCMs in RCE are 
therefore a simple yet intuitive setup to assess convective parameterization (Jeevanjee et al., 2017).

2. Methods
2.1. Models and Simulation Setup

Two models in their SCM setup were used in this study: the Weather Research and Forecasting (WRF) and 
LMDZ models. For WRF, the SCM test case was used (em_scm; WRF version 4.0.2; Skamarock et al., 2019). For 
LMDZ, the LMDZ5B+ version was used, which is based on the CMIP5 version (LMDZ5B; Hourdin et al., 2013) 
but with additional developments (revision 2420). As reference we used previously published WRF CRM results 
(see C19 and CS21). The CRM uses the Advanced Research WRF fully compressible, Eulerian non-hydrostatic 
solver (version 3.6; Skamarock et al., 2008). The CRM simulations have 202 × 202 grid points, with a horizontal 
resolution of 1 km. For a full description of the CRM setup we refer readers to C19 and CS21.

The SCM control simulations were conducted under RCE conditions over an ocean surface, with a fixed sea 
surface temperature of 302 K. In WRF SCM, a stretched vertical grid spacing with 74 model levels was used, with 
model bottom and top at around 40 m and 33 km, respectively. In LMDZ, another stretched vertical grid spacing 
was used, with 79 vertical levels, ranging from 10 m to 80 km.

In terms of convective parameterization, for this study we have imported into WRF the UW-org scheme origi-
nally developed for the CAM5 model. We also tested in WRF five standard convection schemes without memory: 
the Zhang-McFarlane (ZM; G. Zhang & McFarlane, 1995), Kain-Fritsch (KF; Kain, 2004), New-Tiedtke (NT; C. 
Zhang & Wang, 2017), New-Simplified Arakawa-Schubert (NSAS; J. Han & Pan, 2011), and Betts-Miller-Janjic 
(BMJ; Betts, 1986; Betts & Miller, 1986; Janjić, 1994) schemes. The LMDZ SCM uses a modified version of the 
mass flux deep convection scheme of Emanuel (1991) and Emanuel and Živković-Rothman (1999). In particular, 
the triggering and closure were completely overhauled (Rio et al., 2013) so that both the CP scheme (Grandpeix 
& Lafore, 2010) and the thermal plume scheme (Rio & Hourdin, 2008) control triggering and closure. Therefore, 
convection is tightly governed by subgrid, subcloud layer processes (Hourdin et al., 2020; Mapes, 1997). For the 
other parameterizations, in WRF we used the Rapid Radiative Transfer Model for GCMs longwave and short-
wave radiation schemes (Iacono et al., 2008), the WSM6 microphysics scheme (Hong & Lim, 2006), the Yonsei 
University PBL scheme (Hong et al., 2006) which also computes the vertical diffusion due to turbulence, and the 
revised MM5 surface layer scheme based on Monin-Obukhov theory for surface fluxes computations (Jiménez 
et  al., 2012). In the LMDZ runs, the radiation scheme is from an older European Centre for Medium-Range 
Weather Forecasts model (Morcrette,  1991). Boundary layer turbulence is handled by a prognostic turbulent 
kinetic energy diffusion scheme based on Yamada  (1983) as well as by the mass flux thermal plume model. 
LMDZ also includes a large-scale condensation-precipitation-evaporation scheme and a gravity wave param-
eterization (Hourdin et al., 2013, 2020). In WRF, diurnal cycles were removed by setting the solar constant to 
544 W m −2 and a fixed solar zenith angle of 37° to simulate equatorial conditions. In LMDZ, the diurnal cycle of 
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radiation was also removed. The simulations were run for 1,000 days in WRF and 60 days in LMDZ, thereafter 
two types of perturbations were applied, described in Sections 2.3 and 2.4. We note that the significantly longer 
simulation time for WRF is due to the disparate length of time taken by the different convection schemes to reach 
equilibrium (between 100 and 500 days). To be on the safe side we hence run the model for 1,000 days.

2.2. UW-org and LMDZ Cold Pool Schemes

In the UW-org scheme, the org variable can have several effects on convection (see Figure 1 in MN11). We 
focused on two of them: entrainment rate and closure. The fractional entrainment (ϵ) and detrainment (δ) rates 
per unit height in this scheme are given by

𝜖𝜖 = 𝜖𝜖𝑜𝑜𝜒𝜒𝑐𝑐
2, (2)

𝛿𝛿 = 𝜖𝜖𝑜𝑜(1 − 𝜒𝜒𝑐𝑐)
2
, (3)

where χc is the critical mixing fraction of environmental air in the parcels depending on height (see Equation B1 
in Bretherton, McCaa, & Grenier, 2004), ϵo (m −1) is the fractional mixing rate and is inversely proportional to 
height following a common formulation in literature (de Roode et al., 2000; Holloway & Neelin, 2009; Siebesma 
et al., 2007), that is, ϵo = k/z. For the first plume k is an empirical constant (k1) and set to a large value (k1 = 14) 
following the original UW shallow scheme (entrainment rates are usually larger in shallow convection schemes), 
while k for the second plume (k2) undergoes org modification following the equation

𝑘𝑘2 =
𝑘𝑘1

1 + 𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝑜𝑜𝑜𝑜𝑜𝑜2𝑜𝑜𝑘𝑘𝑟𝑟
, (4)

where org2rkm is a unitless parameter, and org is defined in Equation 1. Simply put, the org-modulated entrain-
ment rate impacts convection development via its changing effect over time: during early stages when rain rates 
are small (small org values, as rain evaporation is a source of org) big entrainment rates suppress convection and 
promote the development of large-scale variability (i.e., organization), while in later stages large rain rates (large 
org values) lead to reduced entrainment rates that encourage deeper convection that stabilizes the column.

The second org effect we explored is its impact on cloud-base mass flux (CBMF; i.e., closure), which is 
computed  as

𝑀𝑀𝑏𝑏 = 𝑀𝑀𝑏𝑏𝑏1(1 + 𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝑜𝑜𝑜𝑜𝑜𝑜2𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐 )𝑏 (5)

where org2cbmf is a unitless parameter, Mb,1 is the CBMF of the first plume (given by Equation A3 in Park & 
Bretherton, 2009). The sinking of chilled air from downdrafts can potentially trigger convection by influencing 
plume base vertical velocity. This has the effect of larger CBMFs on rainy days when org values are big and 
the plumes have a higher probability of overcoming convective inhibition (CIN) and attaining their level of free 
convection (the scheme's closure is based on CIN).

We tested a few org configurations by changing and combining the org2rkm and org2cbmf parameters. For brev-
ity, we refer to the cases where only org2rkm was changed as “WRF-RKM” and those where both org2rkm and 
org2cbmf were changed as “WRF-RKMCBMF.”

For the LMDZ CP scheme, the version used here represents a population of circular, identical cold pools of radius 
r. The cold pools are assumed to have a fixed number density DCP (m −2) which sets how many cold pools there 
are per unit area. Hence, they occupy a relative surface area

𝜎𝜎𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐶𝐶𝐶𝐶𝜋𝜋𝜋𝜋
2. (6)

Cold pools can expand horizontally at a horizontal spread speed C following a simple geometrical relation:

𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶

𝜕𝜕𝜕𝜕
= 2𝐶𝐶

√

𝜋𝜋𝜋𝜋𝐶𝐶𝐶𝐶 𝜕𝜕𝐶𝐶𝐶𝐶 , (7)

although their expansion is capped as soon as they reach the maximum allowed relative surface area σCP,max = 0.4.

Cold pools are characterized by the vertical profile of their potential temperature and humidity differences with 
the external air around them (θ′ and q′). Since they are denser than their environment, cold pools have a downward 
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vertical velocity which is transformed into horizontal spread speed C which can then be converted into upward 
motion at the cold pool edge. The total energy available for this mechanical process is the integrated negative 
buoyancy in cold pools, called Available Lifting Energy (ALE):

𝐴𝐴𝐴𝐴𝐴𝐴 = −𝑔𝑔 ∫
ℎ𝐶𝐶𝐶𝐶

0

𝛿𝛿𝛿𝛿𝑣𝑣

�̄�𝛿𝑣𝑣
𝑑𝑑𝑑𝑑𝑑 (8)

where hCP is the cold pool height, g gravity, θv virtual potential temperature, and 𝐴𝐴 �̄�𝜃𝑣𝑣 denotes the grid cell mean 
θv. Deep convection is triggered when ALE > |CIN| (ALE being the largest between the ALEs provided by cold 
pools and PBL thermals), that is, when PBL processes are strong enough to erode boundary layer stability. In 
particular, PBL thermals may trigger convection only if a stochastic triggering condition is fulfilled (Rochetin, 
Couvreux, et al., 2014; Rochetin, Grandpeix, et al., 2014).

The experimental cases in this study are listed in Table 1.

2.3. FixMacro Experiment

We first consider the “strong-nudging” experiment by CS21, where the macrostate was fixed to its RCE mean. 
In the WRF CRM of CS21 (a non-aggregated setup), this was achieved by applying a tendency term for potential 
temperature (θ), water vapor mixing ratio (q) and horizontal winds (u, v) uniformly in (x, y) at each model level, 
proportional to the difference between the horizontal mean field and a target profile, with a short nudging time 
scale of 40 s (see Equation 1 in CS21). The idea is that if the diagnostic assumption used in convection schemes 
were true—using CS21's notation, convective activity C were related to the macrostate ξ via a function (f) : C(x, 
t) = f[ξ(x, t)]—convective activity would remain unchanged while the macrostate is held fixed. In the presence 
of microstate memory, however, in addition to its dependence on the large-scale environment convection also 
remembers its own history. That is, (f) : C(x, t) = f[ξ(x, t), C(x, t − 1)], and convection will not remain unchanged 
but will evolve in time under the influence of the macrostate rather than being determined by it instantaneously. 
Fixing the macrostate hence serves as a simple and direct test for microstate memory.

In the WRF SCM we emulate this experiment of CS21 via our fixed-macrostate (“FixMacro”) experiment. 
Instead of nudging as in CS21, however, we restarted the SCM from its control macrostate and call the convec-
tion schemes with identical input profiles of thermodynamic and wind fields at every time step. This FixMacro 
approach achieved the desired result more directly and was feasible in the WRF SCM due to the model's modular 
design. We modified the code of the convection schemes such that at every time step the prognostic varia-
bles received by the schemes were overwritten with the values from specific target profiles. An ensemble of 
20 FixMacro experiments was run, each with a target profile taken from a 20-day average of the unperturbed 
control run at a different time interval. We also attempted these SCM experiments using the CRM strong-nudging 
method, which yielded similar results (not shown).

Model Convection scheme Case name org parameters Description

WRF Standard WRF convection schemes ZM, KF, NT, NSAS, BMJ – Conventional convection schemes in WRF

UW-org rkm0 org2rkm = 0 Two identical plumes, no org effects 
(memory) in second plume

rkm10 org2rkm = 10 Second plume has org effects

rkm20 org2rkm = 20

rkm40 org2rkm = 40

rkm10cbmf10 org2rkm = 10, org2cbmf = 10

rkm20cbmf10 org2rkm = 20, org2cbmf = 10

rkm40cbmf10 org2rkm = 40, org2cbmf = 10

LMDZ Cold pool + Modified Emanuel/ALP/ALE 
schemes

LMDZ-CP – LMDZ5B+ version, settings for tropical 
ocean

Table 1 
Models and Experimental Cases in This Study
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Note that this FixMacro part of the experiment was only conducted in the WRF and not LMDZ SCM because in 
LMDZ it was technically challenging to directly fix the prognostic variables received by the convection scheme 
specifically.

2.4. HomoMicro Experiment

We next consider the “HomoMicro” experiment based on C19, where the WRF CRM control runs were restarted 
from equilibrated RCE states (for non-aggregated, windshear-aggregated, and self-aggregated setups) and subsets 
of prognostic variables (T, q, u, v and others) were horizontally homogenized to their domain-mean values at 
restart. This keeps the macrostate unchanged while essentially wiping out their microstate structures or memory. 
The equivalent with parameterized physics would be to set internal prognostic or “memory” variables to some 
reference value (e.g., zero). In the UW-org scheme there is a single such variable org, while in the LMDZ CP 
scheme there are prognostic cold pool temperature and moisture anomalies (T′ and q′). For WRF UW-org we 
ran one test setting org to zero, while with LMDZ we ran three tests, zeroing either the T′, the q′, or both. An 
ensemble of 20 HomoMicro simulations was conducted for each test, as for FixMacro. Note that this part of the 
study cannot be conducted for the five standard WRF convection schemes, as they do not contain a microstate 
memory variable, so they implicitly predict no change after homogenization. A diagram of the control, FixMacro 
and HomoMicro experiments is shown in Figure 1.

Figure 1. Diagram of the macro- and microstate feedbacks for the (a) control, (b) FixMacro (holding macrostate constant at 
every time step), and (c) HomoMicro (setting memory variable to zero at one time step) experiments. Green positive and red 
negative symbols indicate, respectively, positive and negative feedbacks on convection C or on environmental instability ξ 
favoring C. Italicized words are parameters in the UW-org scheme (see text for description).
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3. Results and Discussion
3.1. RCE Mean State

To illustrate the main features of the various model configurations we show the RCE mean state profiles of the 
relative humidity (RH) of the CRM (non-aggregated case), LMDZ and WRF SCM (for the standard convection 
schemes only ZM is shown as the other schemes have been presented in Hwong et al. (2021)), updraft mass flux 
of each plume in the WRF UW-org SCM, and the cold pool temperature and moisture anomalies of the LMDZ 
SCM, in Figure 2. There is a spread of around 20% of near-surface RH among the SCMs (panel a), with LMDZ 
displaying the moistest low-level profile (around 90%). This spread is comparable to that seen in previous SCM 
intercomparisons (e.g., Hwong et al., 2021; Wing et al., 2020). Hwong et al. (2021) found a difference of around 
30% at near-surface levels even with constrained surface fluxes and a prescribed radiative profile in all models, 
and attributed this spread to the different parameterizations (primarily convection schemes) used in the SCMs. 
The CRM near-surface RH profile lies close to the middle of the SCM spread while in the free troposphere it 
is significantly moister, presumably due to the non-aggregated RCE state of the case shown here (details of the 
CRM mean state are described in C19 and CS21). For the UW-org cases, configurations with smaller entrainment 
rates (larger org2rkm values) display a drier free tropospheric mean state, suggesting more precipitation-efficient 
convection and hence stronger net drying. The UW-org cases also do not display the sharp changes (kinks) 
around the freezing level (∼600  hPa) frequently seen in convection schemes (Hwong et  al.,  2021), although 
this is unlikely to be due to the addition of memory effect via org, as evidenced by the smooth RH free tropo-
spheric profile of the rkm0 case, which does not contain org effects. We further note that the spread of RH in the 

Figure 2. Radiative-convective equilibrium steady state profiles of (a) relative humidity (RH) for the cloud-resolving model 
(CRM) and various single-column model (SCM) configurations (for WRF SCM, only the Zhang-McFarlane and UW-org 
schemes are shown), (b, c) mass fluxes of the first and second plumes of the various UW-org configurations for the WRF 
SCM, and (d, e) temperature and moisture anomalies inside cold pools for the LMDZ SCM.
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troposphere here is smaller than reported in previous model intercomparisons, which indicates that—although 
it does have significant impact—changing the org settings is less impactful than changing convection schemes.

The mass flux profiles of the two plumes in the UW-org scheme cases are shown in panels b and c. For the rkm0 
case (two identical plumes and no org effect) the two plumes display the same mass flux profiles, while for the 
other cases a “division of labor” mechanism develops between the plumes: the second plume, with its reduced 
entrainment due to the org2rkm effect, takes up the role of deep convection (deeper than in rkm0) while the first 
plume, with its high entrainment rate as determined by the default UW shallow convection scheme parameters, 
assumes the function of shallow convection (confined below 850 hPa). Further, the addition of org effects in 
the closure (via org2cbmf; dashed lines in Figure 2) manifests itself in the larger mass flux of the second plume 
around the cloud-base.

The cold pool temperature (T′) and moisture (q′) anomaly profiles of LMDZ-CP are shown in panels d and e. The 
profiles show a cold and moist anomaly at the surface levels, illustrating the effect of cold pools on the thermo-
dynamic microstate of the model. Colder, drier, and deeper cold pools are more powerful to generate convection 
as their negatively buoyant air displaces the surface air, which is then forced to rise, providing upward mass flux 
for triggering (Equation 8) and closure. The cold pools in this particular RCE configuration are fairly shallow and 
not very cold, but enough to have some influence on future convection. In particular, cold pools in this control 
simulation are always dominant over thermals to trigger convection, because the ALE provided by cold pools 
is always one order of magnitude larger than the ALE provided by thermals. Stronger updrafts and downdrafts 
both create a more different thermodynamic profile between cold pools and their environment (larger T′ and q′). 
Therefore, the stronger the unsaturated downdrafts given by the convection scheme, the colder the cold pools. 
And likewise, the stronger the updrafts, the colder the cold pools.

3.2. Response to Fixed Macrostate Perturbation

Figure  3 shows responses of the CRM and WRF SCM to the FixMacro experiment, where the macrostate 
(large-scale environment) was held fixed to the RCE state. We first briefly summarize the CRM results, which 
are described in detail in CS21. Around half of the ensemble members (four out of nine) show exponential precip-
itation growth to unphysical values, an example of which is shown in Figure 3, while for the remaining members 
precipitation decays to zero. CS21 found the trajectory of precipitation (growth or decay) depends on the target 
profile: members exhibiting growth behavior generally have higher convective available potential energy (CAPE) 
values compared to the decaying members. The authors referred to this state of the model as an “unstable equilib-
rium in a thermodynamically fixed mean environment.” By restraining the macrostate—thus preventing it from 
freely evolving—we are essentially overriding the natural negative feedback loop between the large-scale envi-
ronment and subgrid-scale activities (see Figure 1b). Under normal non-nudged circumstances, instability caused 
by the large-scale environment (e.g., water vapor or CAPE) would be rapidly eliminated by convective activity C 
(e.g., convective heating and drying), hence maintaining a state of balance between the macro- and microstates. 
Without this restoring branch in the system (red negative symbol in Figure  1), an unopposed positive feed-
back loop established itself: a macrostate conducive (unfavorable) to convection results in increased (decreased) 
precipitation, boosting (weakening) microstate memory, which in turn enhances (reduces) precipitation. Cold 
pools, for example, are a well-known source of microstate memory that are aided by the evaporation of rain and 
aid convection themselves (Schlemmer & Hohenegger, 2016; Tompkins, 2001; Zuidema et al., 2017). Further, 
CS21 also found low-level microstate structures (standard deviation of temperature and moisture at 2 m) to be 
the first variables to change during the initial development of instability. These findings collectively suggest that 
boundary layer inhomogeneities are the primary source of microstate memory.

For the WRF SCMs, precipitation remains constant as expected for the standard convection schemes and rkm0 
when the macrostate is fixed (panel a), illustrative of the diagnostic assumptions in these cases, that is, absence 
of microstate memory. As the five standard schemes all behave the same way, we only show the results of the 
ZM scheme here. For the cases with org effects, precipitation rates exhibit an initial growth stage (between 2 and 
10 hr after FixMacro started), before stabilizing latest by around half a day. Similar to the CRM, either growth 
or decay in precipitation rates was observed amongst the ensemble members, with a smaller proportion showing 
decay (hence the overall growth shown in Figure 3). Precipitation and the org variable appear to be monotonically 
related: precipitation grows amongst members where org increases, and decays where org decreases. However, 
there are marked differences between the response trajectory of the org cases and the CRM. Using rkm10 as an 
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example, its response initially closely tracks that of the CRM, but starts to diverge from it by around 4 hr. While 
the CRM's growth accelerates exponentially, rkm10's growth appears to slow down and eventually stabilizes. We 
will further explore this discrepant response between the CRM and UW-org scheme in Section 3.3.

For the UW-org cases where org affects entrainment only (WRF-RKM), we found smaller entrainment rates 
(larger org2rkm) to be associated with more rapid precipitation-rate growth. This can be explained by stronger 
convection resulting from reduced mixing with environmental air, rendering a quicker feedback on the precipi-
tation rate. The eventual departure from RCE also appears to increase with smaller entrainment rate. However, 
these trends are not consistently observed for the WRF-RKMCBMF cases: the precipitation rate of rkm40cbmf10 
unexpectedly grows slower than rkm20cbmf10. This suggests that additionally including memory in the scheme's 
closure could have ambiguous effect, as multiple feedbacks come into play. For the corresponding cases where 
org also affects the closure (e.g., rkm10 vs. rkm10cbmf10; same-colored solid vs. dashed lines in Figure 3), 
faster initial precipitation growth rates and larger eventual departures from RCE were observed for the rkm10 and 
rkm20 cases, indicating that making the scheme's closure prognostic via dependence on org could act to enhance 
convection, thereby speeding up its reaction time.

We show in Figure 3 two additional variables that are useful to understand the precipitation response: inte-
grated updraft mass flux (panel b) and org (panel c). The growth shape of the integrated updraft mass flux 
bears strong qualitative resemblance to that of precipitation (panel a), which is expected given the way the 
scheme diagnoses precipitation: updraft condensates exceeding a critical mixing ratio (1 g kg −1) are expelled as 
precipitation (Bretherton, McCaa, & Grenier, 2004). As is common in mass flux schemes, the mass flux profile 
is used to compute all thermodynamic variables, including the precipitating condensates. Thus, precipitation 
is roughly proportional to the integral of mass flux over the convecting layer. For org, its growing response is 
emblematic of the microstate memory effect: org remembers its previous state and grows when precipitation 

Figure 3. The FixMacro responses of normalized (a) precipitation of the cloud-resolving model (CRM), WRF-ZM and WRF 
UW-org cases, (b) integrated updraft mass flux and (c) org for the WRF UW-org cases. All responses are normalized by their 
respective RCE values when FixMacro begins. In panel (a), the normalized response of one of the CRM ensemble members 
(growing to ∼3,000 mm day −1 from an RCE value of ∼4 mm day −1) is shown in thick black line and in dashed black line 
the same response scaled to the maximum range of the single-column models (SCMs). For the SCMs the final responses are 
obtained by averaging over all ensemble members. The RCE values are ∼4 mm day −1 for P, ∼0.3 kg m −1 s −1 for ∫MF and 
∼0.1 for org. The CRM response is reproduced from CS21. ⒸAmerican Meteorological Society. Used with permission.
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grows, since rain evaporation is a source of org. As mentioned, there appears to be a monotonic relationship 
between org and precipitation, at least in the initial growth stages. Given the fixed large-scale environment, 
this suggests that org (representing microstate memory) is chiefly responsible for the precipitation growth, and 
vice versa.

3.3. Why Does the UW-org Scheme Respond Differently to the CRM?

The initial exponential growth or decay of the CRM FixMacro responses presented in Section 3.2 can be explained 
using a PP model, as described in CS21, and which we briefly summarize here. For a detailed description of the 
PP model we refer readers to Section 3 of CS21. The three key equations of the PP model are:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐸𝐸0 − 𝑃𝑃 𝑃 (9)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝑣𝑣𝑣𝑣𝑃𝑃 − 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣𝜕𝜕 𝑉 (10)

𝑃𝑃 = 𝛼𝛼𝑝𝑝𝑅𝑅𝑅𝑅 𝑅 (11)

where R represents aspects of the macrostate environment that are conducive to convection but are also consumed 
by it (e.g., CAPE or water vapor), V represents features of microstate convective structures that stimulate convec-
tion and are stimulated by it (convective memory), E0 is the source of R, P is precipitation, and αdamp, αvp, and 
αp are the damping rate of V, sensitivity coefficient of V to P and of P to the other variables, respectively. Under 
FixMacro conditions, Equation 9 equals to zero. Substituting Equation 11 into Equation 10 and fixing R to a 
constant R0 (hereafter a zero subscript denotes the target FixMacro fixing values), combined with one of the 
steady state (RCE) solutions 𝐴𝐴 𝐴𝐴rce =

𝛼𝛼damp

𝛼𝛼vp𝛼𝛼p
 (see Equations 5–7 of CS21), we get

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛼𝛼𝑣𝑣𝑣𝑣𝛼𝛼𝑣𝑣(𝑅𝑅0 −𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟)𝜕𝜕 𝑉 (12)

which predicts an exponential growth (if Ro > Rrce) or decay (if Ro < Rrce) of V (and P, since they are linearly 
related when R is fixed). Expressed in terms of quantities normalized by their RCE values, Equation 12 can be 
reformulated as

d𝑉𝑉

d𝑡𝑡
= 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(

𝑑𝑑 𝑉𝑉 − 𝑉𝑉

)

, (13)

where 𝐴𝐴 𝑉𝑉 = 𝑉𝑉 ∕𝑉𝑉rce and a = R0/Rrce. Numerical integration of the PP model under FixMacro conditions indeed 
produces qualitatively the initial exponential growth of the CRM simulations (Figure 6 of CS21). Hence, by 
comparing the UW-org scheme to the PP model, we can gain useful insights that may shed light on the FixMacro 
behavior of the scheme when compared to the CRM.

For the UW-org scheme, under FixMacro conditions we have observed a monotonic relationship between P 
and org, as presented in Section 3.2. For simplicity, and motivated by findings of previous studies (e.g., Kirsch 
et al., 2021; Kruse et al., 2022), we assume a linear approximation:

𝑃𝑃 = 𝛽𝛽 𝛽𝛽𝛽𝛽𝛽𝛽𝛽 (14)

where β is the proportionality factor. Equation 1, describing the UW-org scheme, is roughly equivalent to Equa-
tion 10 of the PP model, with V ≡ org, αdamp ≡ 1/τorg, and αvpP ≡ evap2org · E, where E is the mass-weighted 
vertical integral of rain evaporation rate and is proportional to (1 − RH) multiplied by the square root of P (Equa-
tion A8 in Park & Bretherton, 2009). Replacing org with V and reformulated in terms of quantities normalized by 
their RCE values to ease comparison with the PP model, Equation 1 can be simplified as

d𝑉𝑉

d𝑡𝑡
= 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(

𝑏𝑏

√

𝑉𝑉 − 𝑉𝑉

)

, (15)

where αdamp = 1/τorg and 𝐴𝐴 𝐴𝐴 =
1−RH0

1−RHrce

 , with overbar indicating vertical mean values (see Appendix A for a detailed 
derivation of Equation 15).
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Equations 13 and 15 are equivalent versions of the prognostic equation for the memory variable V in the PP model 
and UW-org scheme under FixMacro conditions. Applying a damping rate αdamp of 1 × 10 −4 s −1 the timeseries 
of 𝐴𝐴 𝑉𝑉  predicted by numerical integration of the two equations for the growth (a, b > 1) and decay (a, b < 1) cases 
are shown in Figure 4. The results bear strong qualitative resemblance to the simulated P responses presented in 
Section 3.2 (noting that the timeseries of P would be qualitatively similar to org or V given the assumption of their 
linear relationship). The impact of a small mismatch between the target FixMacro and RCE values is initially the 
same: for a = b, the P responses predicted by the PP model and the UW-org scheme initially closely follow each. 
Their behavior begins to depart only when P has changed significantly. In the PP model, 𝐴𝐴

d𝑃𝑃

d𝑡𝑡
 is linearly related to 

P, producing exponential growth, and no value of P can restore the balance between the growth and decay terms 
on the RHS of Equation 13 if a > 1 (or a < 1 for the decay case). This reproduces the exponential growth (or 
decay) behavior observed in the CRM. By contrast, a negative feedback is built into the UW-org scheme because 
the growth term (first term on the RHS of Equation 15) increases more weakly with P than the damping term 
(second term on the RHS of Equation 15), which eventually brings the system toward a stable equilibrium. Note 
that this behavior is valid given any sub-quadratic function P(org). In other words if P = β org λ, then as long as 
λ < 2, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (and P) will eventually stagnate under FixMacro conditions, as the source term in Equation 1 will grow 
slower than the sink term. In our case, scatterplots of model outputs from the FixMacro experiments show that 
P is approximately linearly related to org (not shown), which supports our assumption of a linear relationship 
(Equation 14).

We further note that for the org growth (decay) case, the condition of b > 1 (b < 1) can only be met if the 
FixMacro target profile for RH is such that 𝐴𝐴 RH0 < RHrce 𝐴𝐴

(

RH0 > RHrce

)

 . Indeed, we found these conditions to 
be true for the respective growing and decaying ensemble members (not shown). Additionally, the org cases with 
faster growth rates generally also have larger average b values (e.g., rkm10 vs. rkm20 in Figure 3), consistent 
with the results shown in Figure 4. We have also found that τorg influences the growth and decay rates: when τorg 
increases (decreases), org is consumed at a slower (faster) rate, which leads to stronger (weaker) memory and 
hence slower (faster) growth and decay rates (not shown).

Overall, our results provide strong evidence that, assuming a linear damping term, the CRM supports a linear (or 
superlinear) relationship between subgrid-scale structure growth rate and the current precipitation rate. Given 
a linear damping, any scheme that predicts a sublinear relationship would eventually stabilize under FixMacro 
conditions. The FixMacro perturbation described here can thus be applied as a simple test to probe the behavior 
of convection schemes and constrain core modeling assumptions. Nevertheless, several caveats must be noted. 
First, although our assumption that P is proportional to org only captures the leading order qualitative behavior 
and is not exactly quantitatively accurate, our goal is to probe whether the trajectory of P under FixMacro condi-
tions can be understood from the scheme's structural assumptions. Our numerical results presented here, albeit 
idealized, can shed light into how the P responses can be explained by the scheme's governing equations. Second, 
by using the CRM as a benchmark, we have made the implicit assumption that the scheme's more stable response 
is somehow an erroneous behavior compared to the CRM's exponential growth. Whether this assumption is fair 
remains an open question. There are often sound operational reasons to put in checks and balances in a convection 

Figure 4. Timeseries of memory variable 𝐴𝐴 𝑉𝑉  under FixMacro conditions predicted by numerical integration of Equation 13 
of the predator-prey (PP) model and Equation 15 of the UW-org scheme for the (a) growth and (b) decay cases. Note that the 
PP curve displays an exponential trajectory similar to the cloud-resolving model response shown in Figure 3 when integrated 
over a longer period of time, even though it appears linear within the 24 hr shown here.
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scheme—however unrealistic or ad hoc though they may be—to prevent simulations from crashing in a GCM 
(as an exponential precipitation growth would be prone to do). Additionally, the absence of dynamical coupling 
in an SCM setup could potentially limit the validity of a full comparison to the CRM results, especially for 
memory that may emerge from feedback with large-scale circulations. However, here, (a) we isolate the memory 
at subgrid scales (microstate memory) and do not focus on the memory related to large-scale circulations (macro-
state memory), (b) there is no significant organization (and hence minimal mesoscale circulations) in the CRM 
reference that we used, thus enabling a more direct comparison of memory behavior between the CRM and SCM 
in the FixMacro experiments. Despite these caveats, it is nonetheless useful to be able to verify that the scheme's 
FixMacro responses do indeed comply with its structural assumptions, and that its discrepant response to the 
CRM can thus be explained.

3.4. Response to Instantaneous Change in Microstate

Figure 5 shows the responses of the CRM and SCMs in the HomoMicro experiment described in Section 2.4, 
in which subgrid-scale variabilities at RCE were homogenized at one time step without changing the column/
domain average. We show a selection of C19's CRM results in panel a. In most of these CRM cases, homogeni-
zation results in a drop to (close to) zero in precipitation rates, which then recover to their respective RCE values 
over a certain time period, defined here as tmem (black dots in Figure 5). If convection were solely dependent on 
the macrostate, precipitation would recover almost instantly, as the homogenization step only affects the micro-
state. The time the system takes to recover (tmem) is hence a measure of the strength of the microstate memory. 
In effect, the homogenization step removes the subgrid-scale structures that are conducive to convection, hence 
the system needs to “start from scratch” and wait for instability to build up again before precipitating. C19 found 
that memory is mostly stored in thermodynamic heterogeneities, rather than winds or hydrometeors. In particular, 
low-level water vapor variability is the dominant memory carrier. For simulations where convection is unorgan-
ized, homogenizing both T and q led to the longest recovery time (2.5 hr), followed by only T (2 hr) and q (1.5 hr) 
homogenization. In contrast to the other variables, homogenizing T leads to an initial increase in precipitation. 
C19 explained this by noting that the precipitating locations usually have cold pools and hence also a colder 
boundary layer. Homogenizing T therefore resulted in an increase in MSE in these locations (instead of a decrease 
as when only q or both T and q were homogenized), leading to an increase in precipitation. Further, convective 
organization leads to a drastic increase in memory, as seen in the significantly longer tmem's of the wind-shear 
organized (12 hr) and self-aggregated (>24 hr) cases where both thermodynamic quantities were homogenized.

In the SCMs, we mimicked the CRM HomoMicro perturbation by setting the memory variable(s) (org in the 
UW-org scheme in WRF, T′ and/or q′ in LMDZ-CP) to zero at one time step. For LMDZ-CP (panel b), Homo-
Micro led to an initial growth instead of reduction in precipitation for all three cases, with very similar tmem's 
of 1–2 hr, which are comparable to the CRM's unorganized cases. We think that the increase in precipitation 
of LMDZ-CP after HomoMicro is related to the fact that in all cases, the perturbation increases ALP, which 
directly controls convection intensity (closure). Interestingly, the ALE (triggering) provided by cold pools is 
successfully decreased by HomoMicro for about 10–15 min when T′ or both T′ and q′ are set to zero. Likewise, 
the ALP provided by cold pools also decreases after HomoMicro for about 45 min for these two tests. However, 
it is the ALP provided by the PBL thermals that dramatically increases for 15 min after HomoMicro and causes 
precipitation to first increase. After rain increases, cold pools become colder, more powerful, and they partially 
maintain an additional supply of mass flux. In contrast to the diverse CRM responses to the three types of 
homogenization (T, q or Tq), LMDZ-CP displays similar behavior in all three. The CRM recovery time almost 
doubled when homogenizing both Tq compared to when only T or q was homogenized, while in LMDZ-CP tmem 
when both Tq were homogenized is almost the same as when homogenizing only T. Analyses of the responses of 
cold pool properties (T′, q′ and cold pool surface area) also show that homogenizing Tq and T only led to almost 
identical behavior. Moreover, T homogenization has a clear impact on q′, but q homogenization did not affect 
T′. These results suggest that memory is mainly carried by the temperature variable in the LMDZ-CP scheme 
(Colin, 2020), as opposed to a dominant moisture memory in the CRM.

For the UW-org cases with memory (panels c, d), the responses are strikingly similar to the CRM where both ther-
modynamic variables or only moisture were homogenized, with precipitation falling immediately almost to zero, 
then overshooting and finally returning to RCE. Although both schemes employ rain evaporation as the memory 
source, it appears that—in contrast to LMDZ-CP—the UW-org scheme contains a stronger moisture memory 

 19422466, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003726 by L
eibniz-Z

entrum
 Fuer M

arine T
ropenforschung (Z

m
t) G

m
bh, W

iley O
nline L

ibrary on [08/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

HWONG ET AL.

10.1029/2023MS003726

14 of 22

Figure 5. The HomoMicro ensemble-averaged responses of precipitation of the (a) cloud-resolving model (CRM), (b) 
LMDZ-CP, (c) WRF-RKM, and (d) WRF-RKMCBMF cases. The responses of the vertically integrated updraft mass flux 
and org of the (e, g) WRF-RKM and (f, h) WRF-RKMCBMF cases are also shown. Black dots indicate the times tmem (x 
coordinates) when the responses first recover to the RCE values (y coordinates) in the respective control runs. Note that the 
org recovery time for rkm10 is ∼30 hr and hence not visible in panel (g). The CRM responses are reproduced from C19. 
ⒸAmerican Meteorological Society. Used with permission.
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effect, reminiscent of the CRM response. The responses are especially close to the wind-shear experiment in the 
CRM, which had an intermediate level of convective organization. Since org represents subgrid-scale variability 
that both promotes and is promoted by convection, setting its value to zero is akin to removing the self-enhancing 
effect of convection via its own memory (positive feedback), hence precipitation takes time to build up again (see 
Figure 1c). As expected, the rkm0 case (which does not contain memory) does not respond to the perturbation. 
Similar to the FixMacro results, we again found the time evolutions of the integrated mass flux (panels e, f) to 
be very similar to those of precipitation. There is also a strong resemblance between the recovery of org and 
precipitation, albeit to a lesser extent for rkm10, which takes a longer time (∼30 hr) to recover to its RCE value. 
Additionally, longer recovery times here appear to correspond to slower precipitation growth in the FixMacro 
experiment for the WRF-RKM cases (but this observation does not consistently apply for the WRF-RKMCBMF 
cases as noted in Section 3.2). For instance, rkm10 displays the longest recovery time here and the slowest growth 
in the FixMacro experiment. This is also true for corresponding WRF-RKM and WRF-RKMCBMF cases: cases 
where org also affects CBMF evolve more rapidly than their WRF-RKM counterparts in FixMacro and also 
recover more quickly here. This shows that both experiments have managed to capture similar aspects of memory, 
albeit via different perturbation methods.

Given the similarity between the responses and recovery times of org and precipitation described in this section 
and in the FixMacro experiment, it is reasonable to assume that org contains information about convective 
memory. Org influences entrainment rate and CBMF via Equations 4 and 5, which results in the different recov-
ery times between the UW-org cases. We explore the org variable further in Section 3.5.

3.5. Convective Memory and org

The HomoMicro experiment revealed different tmem's between the UW-org cases. An important question then 
is the relationship between the org variable and the recovery times: if org adequately represents the effects of 
subgrid-scale heterogeneity, or convective organization, in principle it would be related to tmem. Here, we explore 
the org variable and its relationship to convective memory. To improve statistical confidence, we conducted eight 
additional experiments with org2rkm = 5, 15, 40, 50 and additionally paired them with org2cbmf = 10, resulting 
in a total of 14 simulations for our analyses (excluding rkm0 as it does not contain memory). Additionally, to 
account for the possibility that setting org to zero may represent disparate effects for cases with different orgrce 
values (i.e., a configuration with larger orgrce value could display bigger tmem simply because of the stronger 
perturbation incurred when org is set to zero), we conducted another set of experiments where we set org to a 
value equals to the respective RCE org values minus 0.05, representing the same absolute change for all config-
urations. We refer to this set of experiment as ORG_ABS and to the experiments where org is set to zero as 
ORG_ZERO.

Results are shown as scatterplots in Figure 6, where data from the final 300 days of the 1,000 days control simula-
tions were used to derive the mean orgrce values (results are not sensitive to the averaging period). As some results 
contain outliers, in addition to Pearson correlation coefficient (rp) we have also computed the Spearman's rank 
correlation coefficient (rs), which is less sensitive to outliers. For ORG_ZERO, we found a very high correlation 
between tmem and the mean values of orgrce (panel a). A high negative correlation (panel c) was also found between 
tmem and the initial 𝐴𝐴 d

(

𝑜𝑜𝑜𝑜𝑜𝑜
)

∕d𝑡𝑡 immediately after HomoMicro was applied (where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴∕𝐴𝐴𝐴𝐴𝐴𝐴rce as described in 
Section 3.3), indicating that a slower org recovery rate is associated with larger tmem. For ORG_ABS, the strong 
association between tmem and orgrce discovered for ORG_ZERO disappears (panel b), but a strong correlation 
remains between tmem and the org growth rate (panel d). Note that removing the outlier (rkm10) from ORG_ABS 
does not significantly affect the results (correlations when rkm10 is omitted: rp = 0.4, rs = 0.31 for panel b; 
rp = −0.71, rs = −0.78 for panel d). With the exception of rkm10, the tmem's for the ORG_ABS cases are signif-
icantly more similar to each other (they are closer to each other in panels b and d) compared to the ORG_ZERO 
cases, pointing to the possibility that the highly linear relationship between tmem and orgrce found for ORG_ZERO 
could be due to the more vigorous perturbation the homogenization step has when there is more org to be homog-
enized, which leads to longer recovery times.

Overall, the robustness of the results between panels c and d suggests that it is not the absolute value of org but 
its rate of change that encodes information about the memory strength of a system (before perturbation, it is the 
same RCE system in c and d, so it should have the same memory). Further evidence for this can be seen in the 
initial negative growth rates of a few configurations with the strongest memory (longest tmem's) in the ORG_ABS 
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experiment (panel d), indicating that org continued to decrease (instead of immediately recovering as in other 
cases) after the instantaneous homogenization step because of its higher inertia in these cases.

We also observed from Figure  6a that smaller entrainment rates (larger org2rkm) are sometimes associated 
with smaller values of orgrce and hence smaller rain evaporation rates (as rain evaporation is the source of org). 
This is somewhat surprising, given that drier mean RH profiles are associated with smaller entrainment rates as 
described in Section 3.1 and rain evaporation should increase in a drier environment. Upon closer inspection of 
the timeseries of rain evaporation E(t) and precipitation flux p′(t), we found that the decrease in mean state (i.e., 
time-averaged) 𝐴𝐴 𝐸𝐸 with decreasing entrainment rates could be due to two reasons: (a) rain evaporation is only 
allowed below the lifting condensation level (LCL) in the scheme, and the RH profiles below the LCL are very 
similar amongst the UW-org cases, hence diminishing the contribution of RH to the differences in rain evapora-
tion rates between the cases, and (b) the computation of rain evaporation at every time step involves the multipli-
cation of (1 − RH) by precipitation flux p′ (Equation A1 in Appendix A). Simulation results revealed that p′(t) 
is highly variable and its variance increases while its mean decreases with decreasing entrainment rates below 
the LCL (this can also be deduced from the smaller mass flux values for larger org2rkm cases below the LCL 
as shown in Figure 2, as precipitation is diagnosed from the updraft mass flux in the scheme). This potentially 
results in the higher variance of E(t) and lower steady-state 𝐴𝐴 𝐸𝐸 values for the cases with smaller entrainment rates.

4. Conclusions
The main objective of the present study is to evaluate the memory behavior of several configurations of the 
UW-org scheme as well as the LMDZ CP convection scheme, with memory being defined as the dependence 

Figure 6. Scatterplots of tmem versus the (a) mean org values at RCE for the ORG_ZERO experiment, where org is set to 
zero, (b) same as panel (a) but for the ORG_ABS experiment, where org is set to the respective orgrce values minus 0.05, (c) 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 growth rate over one time step after HomoMicro begins for ORG_ZERO, and (d) same as panel (c) but for ORG_ABS. 
The Pearson and Spearman's correlation coefficients are shown as rp and rs, respectively.
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of convection on its own history given its current environment. As control (memory-less) cases we also tested 
five conventional convection schemes. We compare the responses of these schemes in a SCM setup to those of a 
CRM using two idealized RCE experiments. The CRM results are taken from previously published studies (Colin 
et al., 2019; Colin & Sherwood, 2021), and include two tests: FixMacro, where we hold the macrostate envi-
ronment of convection fixed and observe the evolution of convection; and HomoMicro, where we reset subgrid 
prognostic variables to neutral values at one time and observe the subsequent evolution as they recover. These 
tests serve two purposes. As presented in the previous studies, they allow us to test the diagnostic assumption 
where convective activity is assumed to be instantaneously and solely determined by the macrostate. As newly 
implemented here, they further allow us to differentiate between different possible parameterizations of convec-
tive memory processes.

The picture that emerges from these experiments can be summarized into three main points. First, standard 
convection schemes that do not contain any internal prognostic variables and diagnose convective behavior from 
their environment behave very differently to the CRM in the FixMacro experiment. Precipitation (a proxy for 
convective activity) remains invariant in time, while in the CRM it grows or decays exponentially. This invariance 
reveals the diagnostic assumption used in these convection schemes: convection is slave to and only to the macro-
state, hence when the large-scale environment is restrained, convective activity also remains unchanged. These 
results are unsurprising, but nonetheless serve as a clear and easy-to-understand demonstration of the memory (or 
rather, lack thereof) behavior of schemes that employ the diagnostic assumption. Since the time scales of growth 
or decay shown by the CRM are many hours, this failure of diagnostic schemes is likely to cause large discrepan-
cies in transient convective behavior on subdaily time scales.

Second, the memory-capable UW-org and LMDZ-CP schemes partially, but do not fully, capture the behavior 
of the CRM under FixMacro and HomoMicro conditions. For the UW-org scheme, precipitation mimics the 
behavior of the CRM in that precipitation either grows or decays when its large-scale environment is fixed, indi-
cating the effects of microstate memory. However, its growth trajectory departs from that of the CRM after a few 
hours, trending toward a stable equilibrium, while in the CRM precipitation continues to evolve exponentially. 
This behavior can be explained by the scheme's structural assumptions, in particular that the impact of precipi-
tation on the subgrid state scales sublinearly with precipitation, while the CRM exhibits a linear (or superlinear) 
dependence between the two. When the microstate memory variables are set to zero instantaneously, the UW-org 
scheme behaves similarly to the CRM cases where both Tq or only q were homogenized: precipitation falls to 
zero and then recovers to its RCE state. The LMDZ-CP scheme, on the other hand, displays responses that mimic 
the CRM behavior when only T was homogenized: precipitation grows before falling back to its RCE value after 
a few oscillations. We found the rate of change in time of org to be correlated with memory strength in both the 
FixMacro and HomoMicro experiments, suggesting that org has captured crucial aspects of memory.

Third, different ways convection schemes parameterize memory clearly have an impact on their behavior. Again, 
this might seem trivial and unsurprising, but it is useful to be able to highlight these differences in a clear 
and convincing way. One important difference that was revealed here was the dominant type of memory repre-
sented by the schemes. Even though both schemes use rain evaporation as their memory source (with explicit 
dependence on RH, a thermodynamic variable), the LMDZ-CP scheme appears to emphasize temperature-stored 
memory while the UW-org scheme displays a prevailing moisture memory response that is more similar to 
the CRM's behavior. This intriguing disparity is no doubt a manifestation of the general conceptual difference 
between the schemes and the way they aim to represent memory through their governing equations. Perhaps the 
UW-org scheme's use of a prognostic org variable that mimics the behavior of the prey in the PP equations (akin 
to Colin and Sherwood (2021)) was better at reproducing the CRM's behavior. Of course, whether our results 
imply one scheme's definitive superiority over another cannot be ascertained based only on two simple idealized 
tests: the LMDZ-CP scheme may very well perform better in other (perhaps more realistic) tests, which we have 
not taken into account here. Nevertheless, our findings could perhaps inspire ideas about or guide the search for 
ways to investigate potential flaws in a scheme.

Our study has several limitations. We have relied on results from a single CRM (WRF) to provide “truth” for 
assessing the convection schemes. Findings could potentially differ with another CRM. Even in the WRF CRM 
we found varying results with different states of convective organization. We hence cannot rule out the possi-
bility that other model configurations (e.g., domain size, horizontal resolution) could also influence the results 
presented here. The two experiments conducted are highly idealized and do not resemble anything that would 
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happen naturally in the atmosphere, and thus potentially may be unfair tests of parameterizations that might reveal 
deficiencies that do not matter in practice. We acknowledge that these experiments are indeed more akin to labo-
ratory experiments and are not meant to be realistic. However, they serve the purpose of providing ways to under-
stand the behavior of convection schemes (which is not at all a straightforward endeavor) in a simple framework 
that may offer useful insights on their complicated behavior in realistic scenarios. Under steady-state conditions 
we investigated here (RCE), the importance of the temporal dependence of convection on its own past state (i.e., 
the prognosticity of the memory variable) may not be as apparent compared to transient scenarios. Nonetheless, 
the memory time scales revealed in our experiments (∼12 hr in the UW-org scheme) are very similar to that 
of  the diurnal cycle as well as the moisture adjustment time scale observed over the tropical oceans (Bretherton, 
Peters, & Back, 2004), suggesting that our experiments have likely isolated issues related to the inability of some 
memory-less schemes in the correct simulation of diurnal cycles (Daleu et al., 2020; Harvey et al., 2022). Lastly, 
our SCM setup necessarily means that no insights about convective organization can be provided, which limits 
the interpretation of certain results. The connection between convective memory and organization, for example, 
cannot be verified. Nevertheless, 1D and 3D results have been found to be comparable (Hwong et al., 2022), 
suggesting there is a chance the findings of our study can be applied to improve temporal memory parameter-
ization, which in turn could help improve the representation of spatial organization (Tobin et al., 2013). It is 
therefore a high priority to validate the results discussed here using a 3D setup.

Appendix A: Derivation of org Prognostic Equation
The source term of the org prognostic equation (Equation 1) is evap2org · E, where E is the mass-weighted verti-
cal integral of rain evaporation rate, given by the following equation (Equation A8 in Park & Bretherton, 2009):

𝐸𝐸 = ∫
𝐿𝐿𝐿𝐿𝐿𝐿

0

(1 − RH)

√

𝐾𝐾2
𝑒𝑒 𝑝𝑝′ 𝜌𝜌 d𝑧𝑧𝑧 (A1)

where RH, p′ and ρ are the vertical profiles of RH, precipitation flux and air density, respectively, LCL is the 
lifting condensation level, and Ke is a constant and has the value of 0.2 × 10 −5 [(kg m −2 s −1) −1/2 s −1] (Park & 
Bretherton, 2009). E and p′ are in the units of kg m −2 s −1. To enable a more numerically tractable formulation, 
we simplify Equation A1 to

𝐸𝐸 = 𝐾𝐾

(

1 − RH

)
√

𝑃𝑃 𝑃 (A2)

where P is surface precipitation (in units kg m −2 s −1), 𝐴𝐴 RH is the vertical mean of RH, and K is a constant (in units 
[kg m −2 s −1] 1/2). Note that this simplified equation for E is valid within individual simulations, but should not be 
applied to compare between different UW-org cases using their steady-state values of 𝐴𝐴 RH and 𝐴𝐴 𝑃𝑃  .

Substituting Equation A2 in Equation 1 we get

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
= evap2org ⋅𝐾𝐾

(

1 − RH

)
√

𝑃𝑃 −
org

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜
, (A3)

We have assumed a linear approximation for the relationship between P and org (i.e., P = βorg), Equation A3 
thus becomes

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
= 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2𝑜𝑜𝑜𝑜𝑜𝑜 ⋅𝐾𝐾

(

1 − RH

)

√

𝛽𝛽 𝑜𝑜𝑜𝑜𝑜𝑜 −
(𝑜𝑜𝑜𝑜𝑜𝑜)

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜
, (A4)

There are two steady state (RCE) solutions to the system 𝐴𝐴

(

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
= 0

)

 , one of which is orgrce = 0, and the other 
one gives

√

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟 =
√

𝛽𝛽 𝑟𝑟𝛽𝛽𝛽𝛽𝛽𝛽2𝑜𝑜𝑜𝑜𝑜𝑜 ⋅𝐾𝐾𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜

(

1 − RHrce

)

. (A5)

Combining Equations A4 and A5 by substituting evap2org we get

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
=

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜

[(

1 − RH

1 − RHrce

)√

𝑜𝑜𝑜𝑜𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟
−

𝑜𝑜𝑜𝑜𝑜𝑜

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟

]

. (A6)
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Under FixMacro conditions, Equation A6 can be formulated in terms of a normalized org, with 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴 /orgrce, 
and a FixMacro profile, 𝐴𝐴 RH0

d
(

𝑜𝑜𝑜𝑜𝑜𝑜
)

d𝑡𝑡
=

1

𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜

(

𝑏𝑏
√

𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑜𝑜𝑜𝑜

)

, (A7)

where 𝐴𝐴 𝐴𝐴 =
1−RH0

1−RHrce

 . Substituting 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 with the normalized memory variable 𝐴𝐴 𝑉𝑉  we get Equation 15. Numerical inte-
gration of Equation A7 shows that, for an initial value of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴0 = 1 (i.e., org = orgrce),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑜𝑜𝑜𝑜𝑜𝑜 = 1, if 𝑏𝑏 = 1, control case.

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
> 0, if 𝑏𝑏 > 1,FixMacro growth case.

d(𝑜𝑜𝑜𝑜𝑜𝑜)

d𝑡𝑡
< 0, if 𝑏𝑏 < 1,FixMacro decay case.

 (A8)

Data Availability Statement
The data, scripts and model source codes and files required to reproduce the results described in this manuscript 
are available at https://zenodo.org/record/8073523 (Hwong et al., 2023).
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