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Abstract: The present investigation focused on the toxicity test of cadmium (Cd), copper (Cu), nickel
(Ni), lead (Pb) and zinc (Zn), utilizing two groups of juvenile and adult apple snail Pomacea insularum
(Gastropod, Thiaridae) with mortality as the endpoint. For the adult snails, the median lethal concen-
trations (LC50) values based on 48 and 72 h decreased in the following order: Cu < Ni < Pb < Cd < Zn.
For the juvenile snails, the LC50 values based on 48 and 72 h decreased in the following order: Cu
< Cd < Ni < Pb < Zn. The mussel was more susceptible to Cu than the other four metal exposures,
although the juveniles were more sensitive than the adults because the former had lower LC50 values
than the latter. This study provided essential baseline information for the five metal toxicities using
P. insularum as a test organism, allowing comparisons of the acute sensitivity in this species to the five
metals. In conclusion, the present study demonstrated that P. insularum was a sensitive biomonitor
and model organism to assess heavy metal risk factors for severe heavy metal toxicities. A comparison
of the LC50 values of these metals for this species with those for other freshwater gastropods revealed
that P. insularum was equally sensitive to metals. Therefore, P. insularum can be recommended as a
good biomonitor for the five metals in freshwater ecosystems.

Keywords: metal exposures; biomonitoring; freshwater snails; stresses

1. Introduction

Metals are generally thought to be pollutants, although it is crucial to note that they
are naturally occurring compounds. Nevertheless, anthropogenic activities have resulted
in higher quantities of heavy metals in environmental matrices and living resources, which
surpass natural background values [1,2].
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Metals are nonbiodegradable, unlike organic insecticides, they cannot be decomposed
into less hazardous components. To effectively manage metal pollution, the concentration
dependence of toxicity must be understood. Dose-response relationships serve as the
foundation for assessing the dangers and risks associated with environmental contaminants.
Toxicity testing is an indispensable method for analyzing the effect and fate of toxicants
in aquatic environments, and it has been widely used to select acceptable organisms as
bioindicators/biomonitors, and to develop water quality standards for chemicals. There are
numerous methods for measuring toxicity, but mortality is the most common endpoint [3,4].
Consequently, it is essential to perform studies with local organisms that may be utilized
to obtain data on metal toxicity, to assess the sensitivity of the organisms and to derive an
acceptable level for Malaysian water that can protect the local aquatic populations.

Mollusks have been considered attractive bioindicator and biomonitoring subjects for
quite some time. They are abundant in numerous terrestrial and marine environments,
and are readily collected. They display a high buildup of contaminants, particularly heavy
metals [5]. The snail Pomacea (family: Ampullaridae) was chosen for testing because of its
vast distribution and abundance in aquatic environments, such as rivers, paddy fields, lakes
and ponds. Melo et al. [6] suggested that the selection of a test species for toxicity testing is
essential for a precise evaluation of environmental impact. The organism must: (a) belong
to an important ecological group in terms of taxonomy, trophic level or niche; (b) be widely
available in its environment, easily cultivated in the laboratory; (c) have a consistent and
measurable response to the toxicant; and (d) be genetically stable. Finally, investigators
must be familiar with the organism’s physiology, genetics, taxonomy, behavior, etc. Pomacea
insularum appears to fulfil all of these conditions, with the exception of a database. In
the scientific literature, little is known about the hazardous effects of metals on this snail.
However, a large body of literature has been published on the toxicity testing of heavy
metals employing freshwater snails; Abdel Gawad [7] on Theodoxus niloticus, Ab-del-Moati
and Farag [8] on Lanistes bolteni, and Shuhaimi-Othman et al. [9] on Melanoides tuberculosus.

Cadmium (Cd) is a non-essential element which is toxic to organisms, even in trace
amounts [10], and it could pose renal toxicity issues in humans in elevated accumula-
tion [11]. Cd accumulates to high levels in various aquatic creatures due to its high
solubility in water [10,12]. Copper (Cu), on the other hand, is a vital metal for many ani-
mals, including humans, but slightly above the threshold would result in extreme toxicity
for aquatic organisms [13,14]. Nickel (Ni)’s biological functions in animals and humans are
not well studied, but elevated quantities may have carcinogenic consequences [15–18]. For
numerous species of microorganisms and plants, Ni is essential for growth and develop-
ment [18–20]. Elevated lead (Pb) has been linked to a variety of malignancies, cardiovascu-
lar illness, central nervous system disorders, liver and kidney damage, hearing impairment
in children and newborns [21–23] and inhibition of enzyme activities [24,25]. Iron (Fe) is a
component of hemoglobin in red blood cells, while zinc (Zn) is an important nutrient for
plant growth, serving as a cofactor for over 300 proteins [26].

Considering the abovementioned impacts of the five potentially toxic metals (Cd, Cu,
Ni, Pb and Zn) to humans, animals, plants and the environment, the goal of this study
was to examine the toxicity of exposures to these metals by the use of juvenile and adult P.
insularum as test organisms.

2. Materials and Methods
2.1. Sample Preparations and Laboratory Experiments

The snails, P. insularum, were collected from Universiti Putra Malaysia’s Lake (N
02◦59′58.84′′, E 101◦42′39.42′′), on the 11 March 2007. The lake is considered unpolluted
with low Cu concentration in the surface sediments (27.7 mg/kg dry weight) and with
good surface water quality parameters; temperature (32.6 ◦C), conductivity (77.9 µS/cm),
total dissolved solids (0.05 mg/L), dissolved oxygen (7.56 mg/L), pH (6.61) and turbidity
(0.00 NTU) (unpublished data).
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For acclimation, a maximum of 100 juveniles and 100 adult snails were kept per
aquarium (30 cm length × 19 cm with × 18 cm height containing 6000 mL). During the
acclimation period, the surface water quality parameters of the dechlorinated tap water in
the plastic aquarium tanks ranged from 28.0 to 31.0 ◦C for temperature, 1.00–5.00 µS/cm
for conductivity, 0.01–0.03 mg/L for total dissolved solids, 6.50–7.50 mg/L for dissolved
oxygen, 6.70–7.10 for pH and 0.00 NTU for turbidity (unpublished data). Each aquarium
was also regularly aerated to give a moderate airflow, in which the snails were acclimatized
to laboratory settings for three days. To eliminate any potential bias in the experiments, the
snails were divided into two groups, namely juvenile (shell lengths: 0.50 to 0.70 cm) and
adult (shell lengths: 1.50 to 2.20 cm) snails for the experimental toxicity study.

Prior to static toxicity testing, range-finding-tests following the standard methods [27]
were conducted to determine the critical range, which is defined as the interval between
the lowest concentration of metals that kills very few or none of the experimental snails
and the highest concentration that kills the majority or all of the experimental snails during
the experimental period. The purpose of these tests was to determine the median lethal
doses (LC50) of each metal in the snails exposed for 24, 48, 72 and 96 h (h).

Following the range-finding-tests, five nominal concentrations of Cu, Cd, Zn, Pb and
Ni were chosen (Table S1). Metal solutions were prepared by diluting the metal stock
solutions with dechlorinated tap water to respective nominal concentrations of the five
metals. Dechlorinated tap water was used as the negative control. The control samples
comprised snails which had not been exposed to any metal solutions and were treated
with the identical experimental conditions as the experimental samples. The tests were
carried out under static conditions, without renewal of the solution until the end of the
experiment. The control and metal-treated groups each consisted of two replicates of
10 healthy snails in a plastic aquarium tank of 21 cm length × 13 cm with × 11.5 cm height,
containing 1000 mL of the respective nominal concentrations of the five metals. During the
experimental exposure period, the surface water quality parameters in the plastic aquarium
tanks were 28.0–30.2 ◦C for temperature, 1.00–3.00 µS/cm for conductivity, 0.01–0.05 mg/L
for total dissolved solids, 6.50–7.50 mg/L for dissolved oxygen, 6.50–7.05 for pH and 0.00
NTU for turbidity (unpublished data).

The standard stock solutions (100 mg/L) of Cd, Cu, Ni, Pb and Zn, were prepared from
analytical grade metallic salts of CdCl2·2.5H2O, CuSO4·5H2O, NiSO4·6H2O, Pb(NO3)2 and
ZnSO4·7H2O, respectively (Merck, Darmstadt, Germany), by diluting with deionized water
in 1 L volumetric flasks. Acute Cu, Cd, Zn, Pb and Ni toxicity experiments were performed
for a four-day (96-h) period using juvenile and adult snails, obtained from stocking tanks.
The snail death rates were determined at 24-, 48-, 72- and 96-h periods. The deceased snails
were removed from the experimental tanks at each period. The snails that did not recover
after being placed in a tank with pure freshwater were considered dead.

No stress was observed for the snails in the solution, indicated by 100% survival for
the snails in the control water until the end of the experiment. A total of 10 animals per
treatment/concentration were used in the experiment, and a total of 300 healthy juveniles
and 300 healthy adult snails were used in the present experimental toxicity study. All
the procedures of toxicity testing were modified from Adam [4], Melo et al. [6], Abdel
Gawad [7], Abdel-Moati and Farag [8] and Shuhaimi-Othman et al. [9]. Water samples for
metal analysis were taken before and after the experimental study. The collected water
samples were immediately acidified to 1% with ARISTAR nitric acid (65%) (BDH Inc., VWR
International Ltd., Lutterworth, UK) before metal analysis by flame atomic absorption
spectrophotometer (FAAS-Perkin Elmer model AAnalyst800, Waltham, MA, USA). The
detection limits of the FAAS for Cd, Cu, Ni, Pb and Zn were 0.009, 0.010, 0.010, 0.009 and
0.007 mg/L, respectively.

2.2. Statistical Analysis

The mean values and standard deviations were calculated using Microsoft Excel 2003.
The data and median lethal concentration (LC50) values for the toxicity test were examined
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utilizing Probit Analysis Biostat 2007 Professional Package 3.7 (Informer Technologies, Inc.,
Los Angeles, CA, USA).

3. Results
3.1. Toxicity Tests

Using mortality as an endpoint, studies on the toxicity and tolerance of heavy metals
in P. insularum were conducted by short-term toxicity experiments. Table 1 provides a
comparison of the LC50 values of five metals between juveniles and adults of P. insularum.
For the adult snails, the 48-h LC50 concentrations (mg/L) of Cd, Cu, Ni, Pb and Zn were
24.73, 3.10, 10.73, 17.24 and 57.99, respectively, while the 72-h LC50 concentrations (mg/L)
were 11.7, 1.84, 6.88, 11.45 and 26.97, respectively. For the juvenile snails, the 48-h LC50
concentrations (mg/L) of Cd, Cu, Ni, Pb and Zn were 3.67, 0.94, 4.77, 10.44 and 30.16,
respectively, while the 72-h LC50 concentrations (mg/L) were 2.15, 0.50, 3.01, 8.35 and 11.36,
respectively.

Table 1. Comparisons of the LC50 values (mg/L) of Cd, Cu, Ni, Pb and Zn in both juveniles and adults
Pomacea insularum, in 48 h and 72 h of exposure, with their standard errors (SE), upper confidential
limits (UCL) and lower confidential limits (LCL) of the obtained LC50 values.

Snails Juvenile Juvenile Adult Adult

Periods 48 h 72 h 48 h 72 h

Cd LC50 3.67 2.15 24.73 11.71
SE 0.52 0.40 3.64 1.78

LCL 2.63 1.34 17.38 8.07
UCL 4.71 2.96 32.09 15.35

Cu LC50 0.94 0.50 3.10 1.84
SE 0.21 0.28 0.56 0.58

LCL 0.53 −0.10 1.98 0.68
UCL 1.36 1.09 4.22 3.00

Ni LC50 4.77 3.01 10.73 6.88
SE 1.16 1.32 1.37 1.42

LCL 2.42 0.32 7.95 3.90
UCL 7.12 5.70 13.50 9.85

Zn LC50 30.16 11.36 57.99 26.97
SE 4.81 3.50 8.22 5.32

LCL 20.43 4.19 41.18 15.84
UCL 39.90 18.52 74.80 38.10

Pb LC50 10.99 8.35 17.24 11.45
SE 1.29 1.14 1.99 1.31

LCL 8.39 6.04 13.22 8.80
UCL 13.59 10.66 21.25 14.09

After 48-h exposure, the juvenile snail groups were most sensitive to Cu, followed by
Cd > Ni > Pb > Zn, whereas the adult snail groups were most sensitive to Cu, followed by
Ni > Pb > Cd > Zn. In addition, after 72-h exposure, the juvenile snails were most sensitive
to Cu > Cd > Ni > Pb > Zn, while the adult snails were most sensitive to Cu, then Ni > Pb >
Cd > Zn. According to Table 1, the juvenile snails were more sensitive and less tolerant to
all metals (Cu, Ni, Pb, Zn and Cd) than adult snails.

The LC50 values based on 48 and 72 h declined in the following order for adult snails:
Cu > Ni > Pb > Cd > Zn. The LC50 values based on 48 and 72 h declined in the following
order for juvenile snails: Cu > Cd > Ni > Pb > Zn.

3.2. Changes in Observed Behavior and Morphology

During the experiment, the behavioral and morphological alterations in snails exposed
to varying quantities of Cu, Zn, Cd, Pb and Ni were observed. When the snails were
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exposed to lower concentrations of these metals, they could move up and down, stretch
their bodies from their shells, and attach themselves to the wall of the plastic container. The
majority of the snails survived the experimental period, which corresponded well with the
findings of Khangarot and Ray [28]. At moderate concentrations of these metals, the snails
secreted mucus with a decreased movement rate. They were inert, incapable of attaching
their feet or closing their operculum, and unable to retract their bodies into their shells. The
bodies of the snails were mostly exposed in plastic containers. They produced a great deal
of mucus, and their feet stretched from their shells but could not retract. Generally, they
sunk to the bottom of the plastic containers and became immobile.

The crawling or movement of snails during the experimental periods in an attempt
to escape the experimental aquaria was a major drawback of this static toxicity test. As a
result, high metabolic rates may have resulted in a large uptake of toxicants at that time, or
the snails’ activity in a starving condition may have decreased their resistance to toxicants.
The size and age of the animals utilized in the toxicity test were additional variables that
affected the LC50 values. It is well known that as an animal ages, its toxicity and tolerance
to metals diminish. Cd and Cu concentrations in the soft tissues of freshwater clams have
been found to similarly decrease with increasing age [29]. Young snails may be more
sensitive to some metals due to their increased accumulation rates. Wier and Walter [30]
revealed that juvenile Physa gyrina snails were three times as sensitive to Cd as their mature
counterparts. Therefore, larger animals have greater resistance than smaller ones. The
present study, using snails of two different sizes, confirmed the predicted result. On the
other hand, these snails have an operculum to protect them when the water around them
becomes toxic.

In the present experiment, P. insularum developed a white slime when they were
exposed to high concentrations of Cd (19.98 mg/L) and Cu (4.08 mg/L). Based on the
physiological reactions, Ravera [31] discovered that Biomphalaria glabrata was more resistant
to heavy metals after 24 h of exposure. According to their observations, snails sank to the
bottom with their operculum closed, expelled bubbles and slowed down their metabolic
processes. When exposed to high levels of Cd and Cu, the snails could not adhere to the tank
walls because the metals impede cell dynamics and injure the snails’ tissues and cells [32].
The metals eventually infiltrate the cells, resulting in cell necrosis and snail death [33].
Mule and Lomte [34] showed that exposing the freshwater snail Thiara tuberculosa to CuSO4
and HgCl2 decreased their oxygen consumption, and the heavy metal absorption from the
medium dropped.

4. Discussion
4.1. Cu Is the Most Toxic Metal

The results showed that the mortality of the snails increased as they were exposed to
increasing concentrations of metals or for longer durations. Cu was the most toxic metal.
The snails were most susceptible to Cu with the lowest LC50 values compared to other
metals. Comparing the LC50 values of Cd and Cu for P. insularum with those of other
snail species (>10 species), including mussels, clams, sea anemones, cockles and shrimp,
revealed that P. insularum was more sensitive to Cu than Cd, Ni, Pb and Zn. This is well
indicated in the different species of bivalves and gastropods from the literature (Tables 2–6).

Even though juvenile snails were more sensitive to the five metals, Cu was shown
to be the most toxic metal for both juvenile and adult snails, when compared to Ni, Pb,
Cd and Zn. This is consistently correlative with research on the toxicity of heavy metals
to freshwater organisms. For instance, the rank order of toxicity of some heavy metals to
Daphnia magna was Cu > Zn > Cd > Pb > Ni (48 h) [35]; for rainbow trout (Salmo gairdneri) it
was Cu > Zn > Cd > Pb > Ni (96 h) [35]; for amphibian tad-poles (Bufo melanostictus) it was
Cu > Cd > Zn > Ni (96 h) [36]; and for Lymnaea luteola it was Cu > Cd > Ni > Zn (72 h) [28].

The findings of the present study showed that the LC50 values in the five metals
significantly decreased (p < 0.05) from 48-h to 72-h periods in both juvenile and adult snails.
This indicated that the longer period of toxicity testing resulted in the snails being more
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sensitive to the five metal toxicities. Taylor et al. [37] reported that the LC50 values of Cu
in Gammarus pulex decreased from 0.047 to 0.037 after 48-h and 96-h periods, respectively.
Similarly, they also found that the LC50 values of Cu in Chironomus riparius decreased from
1.20 to 0.70 after 48- and 96-h periods, respectively. Using P. canaliculata as the test organism,
Dummee et al. [38] demonstrated that the LC50 values of Cu exposure periods of 4, 48, 72
and 96 h were 0.330, 0.223, 0.177 and 0.146 mg/L, respectively. This indicates a decreasing
order of LC50 values with increasing Cu exposure period. All of these data demonstrated
that the longer the duration of exposure, the more sensitive the invertebrates to pollutants.

Brix et al. [39] showed that the 96-h LC50 value of Cu in Lymnaea stagnalis was 31 g/L,
indicating a moderate acute sensitivity to Cu. However, the projected EC20 value (the
median effective concentration of a substance to 20% of test organisms) for Cu after a 30-day
chronic exposure of juvenile L. stagnalis to Cu was 1.8 mg/L, making it the most sensitive
organism to Cu investigated to date. In a different experiment with adult freshwater snails,
Melanoides tuberculata, Shuhaimi-Othman et al. [9] observed an increase in the median
lethal times (LT50) and concentrations (LC50) of eight metals after four days of laboratory
exposure. Cu was the most hazardous metal to M. tuberculosis, followed by Cd, Zn, Pb, Ni,
Fe, Mn and Al.

Several investigations suggested that Pomacea snails were efficient bioindicators for Cu
and Cd. Pomacea canaliculata has the capacity to acquire Cu from a variety of metals (20, 30,
45, 67.5 and 101.3 mg/L), but demonstrated behavioral control at Cu concentrations of 67.5
and 101.3 mg/L, as determined by Pena and Pocsidio [40]. This provided evidence for using
the golden apple snail (whole tissue analysis) as a sublethal Cu biomonitor (0–45 mg/L).
Additionally, Manzla et al. [41] reported acute toxicity of Cu and Cd on the hepatopancreas
cells of Helix pomatia (toxicity of Cu > Cd). Hoang and Rand [42] showed that CuCO3
was toxic to apple snails (Pomacea paludosa) due to the fact that Cu concentrations were
higher in living snails than in dead snails. Their results indicated that apple snails could
excrete deposited Cu [38]. They demonstrated that Pomacea was a suitable bioindicator
and biomarker for Cu pollution biomonitoring in aquatic environments. Habib et al. [43]
showed that B. alexandrina was a suitable organism for assessing Cd toxicity in freshwater
environments based on short-term 96-h (LC50) and long-term exposure to Cd.

The outcomes of the present study indicated that both the smaller and bigger snail
populations displayed the same decreasing order of metal toxicity: Cu > Cd. The order of
toxicity of these metal ions correlates well with the metal toxicity levels of other freshwater
organisms. For amphibian tadpoles [36], Daphnia magna [35] and pulmonate snails [44], Cu
was more poisonous than Cd.

In understanding the toxicity of Cu, Hoang and Rand [42] indicated that the carbonate
content of snails may explain the potential toxicity of Cu carbonate to snails. This is
because snails need carbonate for shell growth; their carbonate need is greater than that
of fish. Cu carbonate may enter snails as Cu, and dissociate after entering the snails by
biological and chemical processes. Carbonate would be accessible for shell formation, while
Cu would accumulate in soft tissue. Hoang et al. [45] also showed that the majority of
deposited Cu in juvenile apple snails (Pomacea paludosa) was concentrated in soft tissue
(about 60% in the viscera and 40% in the foot), and the shell contained less than 4% of
the total accumulated Cu. Nevertheless, a comparison of the absorption rate in aquatic
organisms revealed that, generally, the uptake rate constant is Zn > Cd > Cu [46]. This gap
is likely related to the four-day metal exposure duration in this investigation. Other factors
that may influence the bioaccumulation of heavy metals in aquatic organisms include
feeding habits [47], growth rate and age of the organism [5], and the bioavailability of the
metals, which is highly dependent on water hardness, pH and acid-volatile sulfide [48].
Hoang and Rand [42] demonstrated that apple snails (Pomacea paludosa) accumulated more
Cu from soil-water treatments than water-only treatments, implying that apple snails
accumulate Cu from environmental media (sediment or water). The rate of increase in
the weight of a snail’s tissue and shell is typically greater than the rate of accumulation of
metals in its body. Lau et al. [5] and Hoang et al. [45] showed that juvenile apple snails
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collected Cu during the exposure period and excreted Cu during the depuration phase.
Metals accumulated in animals can be stored without excretion, leading to high body
concentrations (accumulators), or the metal levels in the body can be maintained at a
low constant concentration (regulators) by balancing the uptake with controlled excretion
rates [49].

4.2. Juvenile Snails Are More Sensitive to Metal Toxicity

Smaller snails (0.50 to 0.70 cm) were shown to be more sensitive and less tolerant to
all metals (Cd, Cu, Ni, Pb and Zn) than larger snails (1.50–2.20 cm). Previous research
has demonstrated that younger organisms are more susceptible to toxicity [50,51]. In a
study on mussels, Yap et al. [51] demonstrated that the species was most susceptible to
Cu, followed by Cd; however, the small size group was more sensitive than the large size
group, as the small group had lower LC50 values. In addition, it should be emphasized
that other environmental variables, such as water quality, might influence the toxicity of a
metal [52], and, therefore, can contribute to discrepancies in reported results. Although a
standard test on a single species may provide information on the environmental risks of a
toxicant, one should not establish safe environmental levels for toxicants based on a small
number of test species. As the tolerance of Pomacea to metals was influenced by chemical
type and test duration, it is imperative that the toxicity test encompasses a wider range of
species and exposure times in future studies.

If other aspects of the snail’s life cycle had been researched, more information about
its sensitivity to heavy metals would have been available. Wier and Walter [30] found that
immature Physa gyrina snails were three times more vulnerable to heavy metals than their
mature counterparts. Cheung and Lam [53] showed that the juvenile stage of Physa acuta
freshwater snails was the most Cd-tolerant when compared to the embryo. Earlier life
stages, such as embryos and larvae, were the most vulnerable to heavy metals, according to
multiple investigations [54,55]. These results corroborated the present study’s conclusion
that snails of a lower size range (0.50–0.70 cm) were more vulnerable to all metals than
snails of a larger size range (1.50–2.20 cm) (Cu, Ni, Pb, Zn and Cd). The juvenile stage was
found to be more vulnerable to heavy metals than the later stages.

4.3. Comparisons of LC50 Values with Those of Other Species of Molluscs

It is difficult to compare the LC50 values of metals in this species with those in other
gastropod species due to the varying ability of closely related taxa or species belonging to
the same genus that inhabit the same environments to accumulate metals in water with
varying hardness. Using adult Theodoxus niloticus snails, Abdel Gawad [7] reported the
96-h LC50 values for Zn, Fe, and Pb to be 12.199, 8.6 and 18 mg/L, respectively. These
values grew as the duration of exposure decreased. Fe was the most hazardous element to
the snail, followed by Zn and Pb.

The findings of this investigation on the sensitivity of P. insularum to the toxicity of
heavy metals supported the notion that the susceptibility of an animal to heavy metal
toxicity differed among species [55–58]. This is demonstrated by comparing the LC50
values of P. insularum to those of other species. For example, Arthur and Leonard [59]
reported that the 96-h LC50 of Cu in Physa integra was 0.039 mg/L, which is lower than the
96-h LC50 in P. insularum in the present study, which was 0.21 mg/L of Cu. The variation
may be due to the various test animal species, techniques, and environmental conditions.
Throp and Lake [60] reported that the 96-h LC50 values of Cd in the freshwater shrimp
Paratya tasmaniensis were 0.06 mg/L. However, in the present investigation, the 96-h LC50
values of Cd in P. insularum were 2.55 mg/L. In addition, Lam [61] reported that the 96-h
LC50 values of the tropical freshwater snail Radix plicatulus were 2.55 mg/L of Cd, which
was comparable to the 72-h LC50 values of Cd in juvenile P. insularum (2.15 mg/L) in the
present study. Consequently, based on the preceding examples, it can be concluded that the
susceptibility of different species [62] and several factors such as experiment procedures, the
physical and chemical characteristics of the experimental conditions such as temperature,
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DO, pH and water hardness [63], as well as the physiological, size, and age of the animals
used, can influence the LC50 values in the toxicity study.

Multiple researchers have investigated the impact of environmental characteristics
such as temperature, pH, and dissolved oxygen on the toxicity of heavy metals and pub-
lished their findings in the scientific literature. In general, increasing respiration at higher
temperatures directly increased toxicity. Moreover, high temperatures indirectly increase
toxicity by reducing oxygen levels in water [64]. Temperature increases had a direct effect
on the ramshorn snail, Helisoma campanulatum, and the pond snail, Viviparus benghalensis,
according to Gupta et al. [65]. Eisler [58] also showed that at 20 ◦C, the mummichog was
more vulnerable to Cd than at 5 ◦C. In contrast, it is well established that increased water
hardness reduces the acute toxicity of metals [66]. However, as the temperature utilized in
the present exposure investigation was constant, this abiotic parameter had no effect on the
snails’ toxicity and tolerance to heavy metals.

Cu is more hazardous than Zn and Hg to the two intertidal snails Planaxis sulcatus and
Trochus radiatus, according to an acute toxicity test performed by Kulkarni et al. [67] using
static bioassay procedures. The availability of heavy metals due to different anthropogenic
metal inputs could be attributed to their metal toxicities [68].

For all metals, Shuhaimi-Othman et al. [9] found that (LC50 increased with decreasing
mean exposure concentrations and periods. Cu was discovered to be the most hazardous
metal to M. tuberculosis, followed by Cd, Zn, Pb and Ni. Other studies demonstrated
divergent patterns in the toxicity of certain snails. According to Luoma and Rainbow [40],
the rank order of metal toxicity varies among organisms; Khangarot and Ray [28–30]
demonstrated that the order of toxicity was Cd > Ni > Zn in Lymnaea luteola,; Gupta
et al. [69] and Gadkari and Marathe [70] showed that the order of toxicity was Zn > Cd >
Pb > Ni in Viviparus bengalensis.

According to Shuhaimi-Othman et al. [9], the LC50 values of Cu, Cd, Zn, Pb and Ni
for 48 and 96 h were 0.39, 11.85, 13.15, 10.99 and 36.46 mg/L, and 0.14, 1.49, 3.90, 6.82 and
8.46 mg/L, respectively. Metals’ acute toxicity to M. tuberculosis was the subject of only a
few studies. Nebeker et al. [71] showed that the 96-h LC50 value of Cu in Fluminicola virens
was 0.08 mg/L, and that of Zn in Physa gyrina was 1.27 mg/L, which were lower than those
reported by Shuhaimi-Othman et al. [9]. Bali et al. [72] and Mostafa et al. [73] reported
96-h LC50 values of Cu in M. tuberculosis were 0.2 and 3.6 mg/L, respectively, which were
greater than those reported by Shuhaimi-Othman et al. [9].

Abdel Gawad [74] investigated the effect of different doses of Cd on the toxicity of
Corbicula fluminalis. The 96-h LC50 and daily survival rates were evaluated to determine the
acute toxicity. Their results indicated that the C. fluminalis mortality rate was proportional
to the Cd concentration. After 96 h of exposure, the LC50 was 0.52 mg/L. After 96 h of
exposure, the bioaccumulation value of the pollutant in the soft portions of the clam was
greater than the comparable value in the shell.

Shuhaimi-Othman et al. [9] showed that the LC50 values in M. tuberculata were gen-
erally lower or comparable to those of other freshwater gastropods. It was difficult to
make direct comparisons between the toxicity values found in this study and those in
the literature due to changes in the test waters’ properties (mainly water hardness, pH,
and temperature). Different species, ages, and sizes of the organisms as well as different
test methods (water quality and water hardness) can influence toxicity [50,75–78]. In the
present investigation, the water hardness was low (18.7 mg/L CaCO3), and the water was
classified as soft (75 mg/L as CaCO3).

The snail M. tuberculata was found to be less sensitive to metals compared to other
species [9]. Von Der Ohe and Liess [79] demonstrated that 13 Crustacea taxa were among the
most sensitive to metal compounds, and they concluded that Crustacea taxa are comparable
to one another and to Daphnia magna in terms of sensitivity to organics and metals, and that
mollusks have an average sensitivity to metals. Mitchell et al. [80] observed that the snail
has a tightly sealed operculum, which enables it to tolerate desiccation and, presumably,
also boosts its chemical tolerance.
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Table 2. Comparison of LC50 values (mg/L) of Cd in Pomacea insularum with other mollusks reported
in the literature.

Molluscs Species Water Hardness
(mg L−1)

Live
Stage

Test
Duration

LC50
(mg/L) References

Bivalves Donax faba 29.9 ppt Adult 96-h EC50 0.99 Din and Ong [81]
Anadara granosa 29.5 ppt Adult 96-h EC50 0.94 Din and Ong [81]

Perna viridis NA NA 24-h EC50 1.53 Yap et al. [45]
Modiolus phillippinarum NA NA 96-h EC50 0.02 Ramakristinan et al. [82]

Gastropods Lymnaea luteola 195 Adult 48-h EC50 2.10 Khangarot and Ray [28]
Amnicola sp. 50 Adult 96-h EC50 8.40 Rehwoldt et al. [83]

Biomphalaria glabrata 100 NA 96-h EC50 0.30 Bellavere and Gorbi [84]
Viviparus bengalensis 180 NA 96-h EC50 1.20 Gupta et al. (1981a) [69]
Viviparus bengalensis NA NA NA 2.54 Gadkari and Marathe [70]

Aplexa hypnorum 45 Adult 96-h EC50 0.09 Holcombe et al. [85]
Physa fontinalis NA NA 96-h EC50 0.08 Williams et al. [86]
Radix plicatulus NA NA 96-h EC50 2.50 Lam [62]
Lymnaea luteola 195 Adult 72-h EC50 1.60 Khangarot and Ray [28]
Lymnaea luteola 195 Adult 96-h EC50 1.52 Khangarot and Ray [28]

Physa acuta NA NA 48-h EC50 1.05 Cheung and Lam [48]
Potamopygus
antipodarum NA NA 96-h EC50 0.72 Hall and Golding [87]

Pomacea sp. NA NA 24-h EC50 2.25 Piyatiratitivorakul et al.
[88]

Pomacea sp. NA NA 48-h EC50 2.07 Piyatiratitivorakul et al.
[88]

Pomacea sp. NA NA 72-h EC50 0.68 Piyatiratitivorakul et al.
[88]

Pomacea sp. NA NA 96-h EC50 0.47 Piyatiratitivorakul et al.
[88]

Filopaludina martensi
martensi NA NA 24-h EC50 27.8 Piyatiratitivorakul and

Boonchamoi [54]
Filopaludina martensi

martensi NA NA 48-h EC50 5.01 Piyatiratitivorakul and
Boonchamoi [54]

Filopaludina martensi
martensi NA NA 72-h EC50 3.96 Piyatiratitivorakul and

Boonchamoi [54]
Filopaludina martensi

martensi NA NA 96-h EC50 2.33 Piyatiratitivorakul and
Boonchamoi [54]

Melanoides tuberculata 18.7 Adult 96-h EC50 1.49 Shuhaimi-Othman et al. [9]
Cerithedia cingulata NA NA 96-h EC50 9.19 Ramakristinan et al. [82]

Biomphalaria alexandrina NA NA 96-h EC50 0.22 Habib et al. [43]
Pomacea canaliculata NA NA 48-h EC50 4.26 Huang et al. [89]
Pomacea canaliculata NA NA 72-h EC50 2.24 Huang et al. [89]
Pomacea canaliculata NA NA 96-h EC50 1.98 Huang et al. [89]
Pomacea insularum

(small) 65 Juvenile 48-h EC50 3.67 This study

Pomacea insularum
(small) 65 Juvenile 72-h EC50 2.15 This study

Pomacea insularum
(large) 65 Adult 48-h EC50 24.73 This study

Pomacea insularum
(large) 65 Adult 72-h EC50 11.7 This study

Note: NA = data not available.
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Table 3. Comparison of LC50 values (mg/L) of Cu in Pomacea insularum with other mollusks reported
in the literature.

Molluscs Species Water Hardness
(mg/L)

Live
Stage

Test
Duration

LC50
(mg/L) References

Bivalves Clam Donax faba NA NA 96-h EC50 0.93 Sommanee [90]
Donax faba 29.9 ppt Adult 96-h EC50 0.20 Din and Ong [81]

Anadara granosa 29.5 ppt Adult 96-h EC50 0.23 Din and Ong [81]
Perna viridis NA NA 24-h EC50 0.25 Yap et al. [45]

Anadara granosa NA NA 48-h EC50 0.29 Yap et al. [91]
Modiolus phillippinarum NA NA 96-h EC50 0.22 Ramakristinan et al. [82]

Gastropods Biomphalaria glabrata 100 NA 96-h EC50 0.04 Bellavere and Gorbi [84]
Viviparus bengalensis (at

27.3 C) 180 NA 48-h EC50 0.27 Gupta et al. [66]

Viviparus bengalensis (at
27.3 C) NA NA 72-h EC50 0.12 Gupta et al. [66]

Lymnaea luteola NA NA 96-h EC50 0.172 Mathur et al. [92]
Physastra gibbosa NA NA 96-h EC50 0.041 Skidmore and Firth [93]

Melanoides tuberculata NA Juvenile 24-h EC50 0.20 Bali et al. [72]
Potamopyrgus jenkinsi NA Adult 96-h EC50 0.08 Watton and Hawkes [94]

Lithoglyphus virens 21 Adult 96-h EC50 0.08 Nebeker et al. [71]
Juga plicifera 21 Adult 96-h EC50 0.015 Nebeker et al. [71]

Lymnaea luteola 195 Adult 48-h EC50 0.025 Khangarot and Ray [28]
Lymnaea luteola 195 Adult 72-h EC50 0.027 Khangarot and Ray [28]
Lymnaea luteola 195 Adult 96-h EC50 0.027 Khangarot and Ray [28]

Biomphalaria glabrata 44 Adult 48-h EC50 0.18 De Oliveira-Filho et al. [95]
Melanoides tuberculata NA NA 48-h EC50 3.60 Mostafa et al. [73]

Pomacea sp. NA NA 24-h EC50 4.84 Piyatiratitivorakul et al.
[88]

Pomacea sp. NA NA 48-h EC50 1.85 Piyatiratitivorakul et al.
[88]

Pomacea sp. NA NA 72-h EC50 0.92 Piyatiratitivorakul et al.
[88]

Pomacea sp. NA NA 96-h EC50 0.12 Piyatiratitivorakul et al.
[88]

Pomacea paludosa 68 60 d 96-h EC50 0.14 Rogevich et al. [96]
Melanoides tuberculata 18.7 Adult 96-h EC50 0.14 Shuhaimi-Othman et al. [9]

Cerithedia cingulata NA NA 96-h EC50 0.52 Ramakristinan et al. [82]
Pomacea canaliculata NA NA 24-h EC50 0.33 Dummee et al. [32]
Pomacea canaliculata NA NA 48-h EC50 0.22 Dummee et al. [32]
Pomacea canaliculata NA NA 72-h EC50 0.18 Dummee et al. [32]
Pomacea canaliculata NA NA 96-h EC50 0.15 Dummee et al. [32]
Pomacea insularum

(small) 65 Juvenile 48-h EC50 0.94 This study

Pomacea insularum
(small) 65 Juvenile 72-h EC50 0.50 This study

Pomacea insularum
(large) 65 Adult 48-h EC50 3.10 This study

Pomacea insularum
(large) 65 Adult 72-h EC50 1.84 This study

Note: NA = data not available.
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Table 4. Comparison of LC50 values (mg/L) of Ni in Pomacea insularum with other mollusks reported
in the literature.

Molluscs Species Water Hardness
(mg/L)

Live
Stage

Test
Duration

LC50
(mg/L) References

Bivalves Utterbackia imbecillis 60 Juveniles 96-h EC50 0.19 Keller and Lam [97]
Utterbackia imbecillis 80 Juveniles 96-h EC50 0.252 Keller and Lam [97]

Hamiota perovalis 43 Juveniles 96-h EC50 0.313 Gibson et al. [98]
Villosa nebulosa 43 Juveniles 96-h EC50 0.51 Gibson et al. [98]

Gastropods Amnicola sp. 50 Embryo 96-h EC50 11.4 Rehwodlt et al. [83]
Amnicola sp. 50 Adult 96-h EC50 14.3 Rehwodlt et al. [83]

Viviparus bengalensis 180 NA 96-h EC50 9.92 Gupta et al. [69]
L. acuminata 375 NA 96-h EC50 2.78 Khangarot et al. [99]

Lymnaea stagnalis 100 Juveniles 96-h EC50 0.9 Nebeker et al. [71]
Physa gyrina 26 NR 96-h EC50 0.239 Nebeker et al. [71]

L. luteola 195 Adult 48-h EC50 1.7 Khangarot and Ray [28]
L. luteola 195 Adult 72-h EC50 1.7 Khangarot and Ray [28]
L. luteola 195 Adult 96-h EC50 1.43 Khangarot and Ray [28]

Melanoides tuberculata 18.7 Adult 96-h EC50 8.46 Shuhaimi-Othman et al. [9]
Leptoxis ampla 43 Juveniles 96-h EC50 0.033 Gibson et al. [98]

Somatogyrus sp. 43 Adult 96-h EC50 0.301 Gibson et al. [98]
Pomacea insularum

(small) 65 Juvenile 48-h EC50 4.77 This study

Pomacea insularum
(small) 65 Juvenile 72-h EC50 3.01 This study

Pomacea insularum
(large) 65 Adult 48-h EC50 10.73 This study

Pomacea insularum
(large) 65 Adult 72-h EC50 6.88 This study

Note: NA = data not available.

Table 5. Comparison of LC50 values (mg/L) of Pb in Pomacea insularum with other mollusks reported
in the literature.

Molluscs Species Water Hardness
(mg/L)

Live
Stage

Test
Duration

LC50
(mg/L) References

Bivalve Mussel Modiolus
phillippinarum NA NA 96-h EC50 2.88 Ramakristinan et al. [82]

Gastropods A. hypnorum 60.9 NA 96-h EC50 1.34 Call et al. [100]
Viviparus bengalensis 165 NA 96-h EC50 2.54 Gadkari and Marathe [70]

L. emarginata 150 NA 96-h EC50 14 Cairns Jr et al. [101]
E. livescens 150 NA 96-h EC50 71 Cairns Jr et al. [101]

Filopaludina sp. NA Adult 24-h EC50 319 Jantataeme et al. [102]
Filopaludina sp. NA Adult 48-h EC50 271 Jantataeme et al. [102]
Filopaludina sp. NA Adult 72-h EC50 235 Jantataeme et al. [102]
Filopaludina sp. NA Adult 96-h EC50 192 Jantataeme et al. [102]

Melanoides tuberculata 18.7 Adult 96-h EC50 6.82 Shuhaimi-Othman et al. [9]
Snail Cerithedia

cingulata NA NA 96-h EC50 15.5 Ramakristinan et al. [82]

Freshwater snail
Theodoxus niloticus NA Adult 96-h EC50 18 Abdel Gawad et al. [7]

Archachatina papyracea Land snails Adults 28-days
EC50

1121 Owojori et al. [103]

Pomacea insularum
(small) 65 Juvenile 48-h EC50 10.44 This study
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Table 5. Cont.

Molluscs Species Water Hardness
(mg/L)

Live
Stage

Test
Duration

LC50
(mg/L) References

Pomacea insularum
(small) 65 Juvenile 72-h EC50 8.35 This study

Pomacea insularum
(large) 65 Adult 48-h EC50 17.24 This study

Pomacea insularum
(large) 65 Adult 72-h EC50 11.45 This study

Note: NA = data not available.

Table 6. Comparison of LC50 values (mg/L) of Zn in Pomacea insularum with other mollusks reported
in the literature.

Molluscs Species Water Hardness
(mg/L)

Live
Stage

Test
Duration

LC50
(mg/L) References

Bivalves Corbicula fluminea 64 NA 96-h EC50 6.04 Cherry et al. [104]
Actinonaias pectorosa 170 Glochidia 96-h EC50 0.31 Cherry et al. [104]

Medionidus conradicus 170 Glochidia 96-h EC50 0.57 Cherry et al. [104]
Phychobranchus

fasciolaris 170 Juveniles 96-h EC50 0.21 Cherry et al. [104]

Utterbackia imbecillis 60 Juveniles 96-h EC50 0.27 Keller and Lam [97]
Utterbackia imbecillis 80 Juveniles 96-h EC50 0.44 Keller and Lam [97]
Utterbackia imbecillis 60 Juveniles 96-h EC50 0.36 Keller and Lam [97]
Utterbackia imbecillis 80 Juveniles 96-h EC50 0.59 Keller and Lam [97]

Villosa nebulosa 170 Glochidia 96-h EC50 0.66 Cherry et al. [104]

Actinonaias pectorosa 40 Juveniles 96-h EC50
0.36–
0.37 McCann [105]

Actinonaias pectorosa 160 Juveniles 96-h EC50
1.06–
1.19 McCann [105]

Villosa iris 50 Juveniles 96-h EC50 0.34 McCann [105]
Villosa iris 160 Juveniles 96-h EC50 1.12 McCann [105]

Villosa umbrans 43 Juveniles 96-h EC50 1.30 Gibson et al. [98]
Villosa nebulosa 43 Juveniles 96-h EC50 0.44 Gibson et al. [98]

Donax faba 29.9 ppt Adult 96-h EC50 3.61 Din and Ong [81]
Anadara granosa 29.5 ppt Adult 96-h EC50 7.76 Din and Ong [81]

Modiolus phillippinarum NA NA 96-h EC50 2.34 Ramakristinan et al. [82]

Gastropods Helisoma campanulatum 20 Adult 96-h EC50
0.87–
1.27 Wurtz [106]

Helisoma campanulatum 100 Adult 96-h EC50
1.27–
3.03 Wurtz [106]

P. heterostropha 20 Adult 96-h EC50 1.11 Wurtz [106]
P. heterostropha 100 Adult 96-h EC50 3.16 Wurtz [106]

Physa heterostropha 20 Juveniles 96-h EC50
0.30–
1.39 Wurtz [106]

Physa heterostropha 100 Juveniles 96-h EC50
0.43–
1.39 Wurtz [106]

Amnicola sp. 50 Adult 96-h EC50 14.0 Rehwodlt et al. [83]
Amnicola sp. 50 Embryo 96-h EC50 20.2 Rehwodlt et al. [83]

Viviparus bengalensis 180 NA 96-h EC50 0.64 Gupta et al. [69]
Lymnaea luteola NA NA 96-h EC50 6.13 Mathur et al. [92]

L. acuminata 375 NA 96-h EC50 10.5 Khangarot et al. [99]
Physa gyrina 36 Adult 96-h EC50 1.27 Nebeker et al. [71]

Lymnaea luteola 195 Adult 96-h EC50 11.0 Khangarot and Ray [28]
Lymnaea luteola 195 Adult 48-h EC50 3.80 Khangarot and Ray [28]
Lymnaea luteola 195 Adult 72-h EC50 3.80 Khangarot and Ray [28]
Lymnaea luteola 195 Adult 96-h EC50 1.68 Khangarot and Ray [28]
Lanistes bolteni NA NA NA 58.0 Abdel-Moati and Farag [8]
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Table 6. Cont.

Molluscs Species Water Hardness
(mg/L)

Live
Stage

Test
Duration

LC50
(mg/L) References

Melanoides tuberculata 18.7 Adult 96-h EC50 3.90 Shuhaimi-Othman et al. [9]
Cerithedia cingulata NA NA 96-h EC50 8.99 Ramakristinan et al. [82]

Leptoxis ampla 43 Adult 96-h EC50 0.07 Gibson et al. [98]
Somatogyrus sp. 43 Adult 96-h EC50 0.33 Gibson et al. [98]

Theodoxus niloticus NA Adult 96-h EC50 12.2 Abdel Gawad et al. [7]
Pomacea insularum

(small) 65 Juvenile 48-h EC50 30.16 This study

Pomacea insularum
(small) 65 Juvenile 72-h EC50 11.36 This study

Pomacea insularum
(large) 65 Adult 48-h EC50 57.99 This study

Pomacea insularum
(large) 65 Adult 72-h EC50 26.97 This study

Note: NA = data not available.

4.4. Implications from Biomonitoring Perspective

The use of small prosobranch snails, such as P. insularum, as one of the biological
indicators in toxicity testing, offers several benefits. First, because these snails are prevalent
in still (ponds) and running (streams) waters, they can be utilized as ecologically significant
target species in both lotic and lentic environments. Secondly, they are affordable, easily
harvested and manageable. In addition, they are sensitive indicators of dangerous amounts
of heavy metals such as Cu, Pb, Cd, Ni and Zn identified in this study, comparable to
that reported by Ravera [52] and Lam [62]. They are possibly more susceptible to metals
than larger snails, Brotia hainanensis, because they possess the same trait [107]. For a
realistic approach to pollution consequences, additional research on the acute and chronic
toxicity of various environmental contaminants under various environmental and biological
circumstances is necessary. It is also necessary to assess the combined toxicity of substances.
The mechanisms of contaminants at the cellular and molecular levels in these animals must
also be comprehended.

Under controlled laboratory conditions, Pyatt et al. [108] evaluated the effects of Pb
(5 or 10 mg/L) on the survival of the freshwater snail Lymnaea stagnalis (L.) collected
from lead-contaminated or uncontaminated environments. Significantly more animals
from the polluted environment survived subsequent acute (up to 24 days) Pb exposure
than animals from the unpolluted environment. Acute exposure to Pb (72 h) hindered
various behavioral activities, including movement, eating, tentacle elongation and emerging
from the shell. Pb bioaccumulated in snail tissues, specifically the buccal mass and the
stomach. The freshwater snail is an excellent system for researching the bioaccumulation
and development of environmental Pb tolerance.

Nebeker et al. [71] observed that three snail species from western Oregon were exposed
to metals: Juga plicifera and Lithoglyphus virens, which occupy temperate coastal streams,
and Physa gyrina, which inhabits ponds in the Willamette Valley. J. plicifera was subjected
to Cu and Ni in laboratory flow-through testing, while L. virens was exposed to Cu, and
P. gyrina was exposed to Ni and Zn. J. plicifera had a 96-h LC50 Cu value of 0.015 mg/L, and
a no observable effect level (NOEL) of 0.006 mg/L (at which mortality was not substantially
different from that in control groups) (30-d survival). The 96-h LC50 and NOEL for Ni in
J. plicifera were 0.23 mg/L and 0.124 mg/L, respectively. The 96-h LC50 and NOEL for Cu
in L. virens were 0.008 mg/L and less than 0.008 mg/L, respectively. The 96-h LC50 for Ni
in P. gyrina was 0.239 mg/L, the 96-h LC50 for Zn was 1.274 mg/L and the NOEL for Zn
was 0.570 mg/L.

Piyatiratitivorakul et al. [88] investigated the acute toxicity of Cd and Cu to Pomacea
sp collected from Thailand. The findings revealed the possibility of using the freshwater
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snail Pomacea sp. as a biomonitor for heavy metal levels in freshwater resources. Huang
et al. [89] revealed the acute toxicity of Cd, in which the metal bioaccumulation in tissue was
measured in P. canaliculata and its native competitor Sinotaia quadrata under experimental
settings. The LC50 concentrations (mg/L) for the invasive species were 4.26, 2.08 and 1.98
after being exposed for 48, 72 and 96 h, respectively, which were approximately three times
greater than those of the native species. The viscera gathered the highest concentration
of Cd, followed by the foot and shell in both species. The metal concentrations in the
aforementioned three tissues of P. canaliculata were significantly greater than those of
S. quadrata, regardless of Cd dose and exposure time. They concluded that a high Cd
tolerance, may partially explain P. canaliculata’s capacity to displace S. quadrata from Cd-
contaminated habitats. Cd primarily accumulated in the hepatopancreas and kidneys of
invading species, thus altering the activity of antioxidant enzymes and helping the animals
to deal with the toxicity.

5. Conclusions

This investigation revealed that P. insularum exhibited the same metal sensitivity as
other freshwater gastropods. Cu was the most harmful to P. insularum, followed by Cd,
Zn, Pb and Ni. The acute toxicity tests revealed that P. insularum is more susceptible to Cu
than Cd, Ni, Pb and Zn, which is consistent with the LC50 values reported in the literature
for most invertebrate species. This study indicated that P. insularum may also be used as a
biomonitor for acute and subacute Cd, Cu, Ni, Pb and Zn exposures. Since P. insularum is
widely spread in urban and suburban regions, it is incredibly valuable for ecotoxicological
research. This study demonstrated that P. insularum may be a biomonitor of potentially toxic
metal contamination. Using P. insularum as a test organism, this study provided essential
baseline data for PTM toxicity. Changes in the snail population due to PTM exposures may
potentially influence the predation behavior of predators, which is an interesting area for
future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13021042/s1, Table S1: Nominal and measured concentrations
(mg/L) of Cd, Cu, Ni, Pb and Zn in the toxicity test for the Pomacea insularum of two different sized
groups (Shell lengths, small 0.50–0.70 cm; large: shell 1.50–2.20 cm); Table S2: Mortality of individuals
(Pomacea insularum) for the small sized group (Shell length: 0.50–0.70 cm) collected after four different
periods of exposure to a series of different concentrations of Pb, Ni, Cd, Zn and Cu; Table S3: Mortality
of individuals (Pomacea insularum) for the large-sized group (Shell length: 1.50–2.20 cm) collected
after four different periods of exposure to a series of different concentrations of Cd, Cu, Ni, Pb and
Cu, Zn.
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