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(low and high density) algae reduced calcification rates by 
~ 41.8%, suggesting either a chemical defense response due 
to algal metabolites or potential physical impacts from shad-
ing or abrasion. Documented beneficial buffering effects of 
macroalgae in OA may also elicit negative impacts on coral 
calcification, suggesting further work is needed to elucidate 
how species interactions influence responses to projected 
climate change.

Keywords Calcification · Ocean acidification · Coral · 
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Introduction

Coral reef ecosystem degradation due to climate change 
impacts can alter reef community structure, potentially 
causing phase shifts toward macroalgal-dominated reefs 
(Graham et al. 2015). As a result, coral cover continues to 
decline in most reef ecosystems worldwide, resulting from 
the combination of local and global disturbances (Sully et al. 
2022). Local disturbances on coral reefs include point source 
pollution, sedimentation, eutrophication, extreme weather 
events (Fabricius et al. 2008), and predator outbreaks (Ban 
et al. 2014). Global stressors include warming seawater tem-
peratures due to elevated atmospheric  CO2 that ultimately 
lead to higher disease prevalence and weakened coral immu-
nity responses, as well as causing global bleaching events 
(Ban et al. 2014). However, the potential for local and global 
stressors to interact is particularly alarming due to the likeli-
hood that compounding effects could exacerbate the deterio-
ration of coral reef structural integrity (Tebbett et al. 2023).

Evidence shows decadal scale recovery stimulated 
through coral larval recruitment is possible (Gilmour 
et al. 2013). However, repeated disturbances across a short 

Abstract Global coral reef degradation has precipitated 
phase shifts toward macroalgal-dominated communities. 
Despite the negative repercussions for reefscapes, higher 
abundances of primary producers have the potential to posi-
tively impact the physicochemical environment and mitigate 
negative impacts of ocean acidification (OA). In this study, 
we investigated the influence of macroalgal (cf. Sargassum 
vulgare) density on coral (Acropora millepora and A. hemp-
richii) calcification rates under current and future OA condi-
tions. Corals were resistant to OA up to ~ 1100 µatm, with 
no changes in calcification rates. However, the presence of 
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temporal scale impede recovery trajectories (Hughes et al. 
2018). Fleshy macroalgae, in particular, outcompete slower-
growing corals for resources (e.g., nutrients, light, and 
space) by rapid colonization of bare substrata post-distur-
bance events (McManus and Polsenberg 2004).

Elevated pCO2 from anthropogenic sources are generally 
associated with increased growth rates in fleshy macroalgal 
species (Johnson et al. 2014). Algae tend to benefit from 
increased  CO2 and associated OA conditions, while flexible 
 HCO3

− users are less affected by fluctuations in chemical 
conditions (Ho et al. 2020). From a larger ecological per-
spective, understanding of the effects of OA on reefs that 
have shifted to dominance by macroalgae is still limited. 
Specifically, there is a need to explore how species interac-
tions might influence coral growth rates, which could be 
altered by the presence of fleshy macroalgae. Some evidence 
indicates that photosynthesizing organisms have the abil-
ity to buffer against impacts of OA by elevating localized 
pH in the microenvironment (Bergstrom et al. 2019; Doo 
et al. 2020). However, relatively little is known about the 
impacts of coral–macroalgal interactions on coral growth 
under projected OA.

The Red Sea presents a unique opportunity to understand 
future global change impacts on reefs as daily sea surface 
temperatures can exceed 31 °C in the Central region and 
33 °C in the South during the summer (Chaidez et al. 2017). 
In addition to disturbance events due to climate change and 
industry (e.g., Carvalho et al. 2019), extreme temperatures 
also cause disturbances such as coral bleaching which occur 
in the region (Eladawy et al. 2022). These disturbances can 
lead to a decline in coral cover and an increase in macroal-
gal cover, resulting in more coral–macroalgal interactions. 
Increased competition and greater potential for macroalgal 
phase shifts are potential outcomes as OA intensifies. There-
fore, we exposed common reef-building Acropora spp. from 
the Central Red Sea to varying densities of Sargassum spp. 
and two pCO2 (475 and 1050 µatm) treatments. We simu-
lated macroalgal-dominated reefs and future OA conditions, 
respectively, to quantify the potential physiological impact 
of macroalgae on coral calcification rates in the near future. 
Results from this study offer insight into how varying den-
sities of macroalgae may interact with projected global cli-
mate change stressors (i.e., OA) to modulate calcification 
rates of common reef-building corals.

Methods

Colony collection and treatments

In April 2022, fragments (3–5 cm) of Acropora spp. (com-
posed of species millepora, hemprichii) were collected from 
Al Fahal Northern Reef in Saudi Arabia (22.296863°N, 

38.964912°E). A maximum of 10 nubbins were collected 
from each coral colony, with colonies at a minimum of 10 m 
apart to ensure different genotypes (Baums et al. 2006). Sar-
gassum sp. (cf. vulgare; herein referred to as Sargassum) 
were collected from the King Abdullah Monument Reef 
(22.343043°N, 39.084190°E) three weeks prior to the start 
of the experiment. Nubbins were glued (Seachem Reef Glue) 
onto 5 × 5 cm white acrylic tiles and acclimated for 70 days 
in ambient (hereafter defined as the present day ocean con-
ditions; i.e., no  CO2 enhancement) flow-through conditions 
prior to the experiment. This experiment was conducted in 
the indoor temperature-controlled SeaLabs aquaria space.

Incubation conditions and experimental design

Eighteen continuous flow-through mesocosm tanks (22 L 
volume each) were supplied with sand-filtered seawater at 
~ 600 mL  min−1. Within each tank, an elevated acrylic stand 
containing six coral nubbins (N = 108) on acrylic tiles was 
randomly allocated and placed on the top of each rack. Algal 
treatments consisted of a control treatment (NA; no algal 
density) and two experimental treatments (HA; high algal 
density or LA; low algal density). In the algal treatments, 
eight (HA) or four (LA) bundles of Sargassum were secured 
using zipties to the outside border of the rack. Wet weights 
for each algal group were calculated by placing samples in 
a spinner (15 revolutions) to remove excess seawater, fol-
lowed by gentle blotting with a paper towel prior to weigh-
ing. Algae were weighed at the beginning and end of the 
34-day experiment to determine growth rates, with initial 
wet weights ranging from 35.3 to 45.1 g per rack in the 
LA group to 57.8–70.1 g per rack in the HA group. Care 
was taken to minimize physical interaction of the algae with 
coral nubbins; however, during the experiment, algae grew 
and this interaction was unavoidable.

Light was provided by LED lamps (CoralCare LED Gen2 
UK WH) operating on a 12:12 h light/dark photoperiod with 
a 6-h ramp-up and ramp-down period, and 2 h of maxi-
mum light. Maximum PAR supplied to the treatment was 
~ 230 µmol  m−2  s−1, which was measured twice per week 
using a 2-pi PAR sensor (Apogee Instruments MQ-500). 
Small aquaria pumps (AC-1020 Submersible) were placed 
in each replicate tank to ensure algae and coral received 
appropriate flow conditions.

CO2 seawater manipulation

Seawater to all tanks was fed through one of two header 
tanks (155L). In the ambient sump, sand-filtered seawater 
was fed into the sump and circulated via an aquarium pump 
(Aqua Medic DC runner 3.2), which supplied ambient sea-
water (7.96–8.00 pH; see Table S1) to nine tanks (three NA, 
three LA, three HA treatments). In the elevated  CO2 sump, 
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an Apex Neptune Aquacontroller system was used to control 
the remaining nine tanks (three NA, three LA, three HA 
treatments) by a solenoid that supplied pure  CO2 gas to the 
sump. In this high  CO2 treatment, the treatment was targeted 
at ~ 0.3 pH units below the ambient (7.70 pH target) sump, 
correspondent to a target pCO2 level of ~ 1000 µatm which 
is a value predicted to occur under the RCP 8.5 “business-as-
usual” scenario. Seawater pH, salinity, temperature, and dis-
solved oxygen were measured every day using a calibrated 
YSI ProDSS Multiparameter Digital Water Quality Meter 
probe (Table S1). Total alkalinity samples were collected 
~ 2 times a week and the accuracy/precision was evaluated 
using certified reference materials (CRMs; Batch #172 from 
A. Dickson Laboratory).

Calcification measurements

The effects of algal density on coral calcification were 
determined by changes in buoyant weight over the 34-day 
experiment. The change in buoyant weight, which represents 
changes in skeletal weight, was then converted to dry mass 
of  CaCO3 using the density of aragonite (2.93 g  cm−3), and 
the density of seawater (Spencer Davies 1989).

Surface area inference

Surface area of all coral nubbins was determined by applying 
a constant generated from a subset of 20 acroporid corals 
that were buoyant weighed. Surface area was calculated by 
structure-from-motion and planar photographs (minimum 
100 photographs per nubbin), following established meth-
ods outlined in (Lange and Perry 2020). Photographs were 
aligned in Agisoft Metashape, and a mesh was generated. 
Surface area of corals was then calculated with CloudCom-
pare using generated mesh. Nubbin dry weight was mod-
eled as a function of the calculated surface area (Fig. S1). A 
scaling factor was generated from the linear model and then 
applied to the entire data set to extrapolate surface area from 
dry weights (see Online Resource).

Statistical analysis

The effects of pCO2 and algal density on calcification rates 
of Acropora spp. were analyzed with a blocked two-way 
ANOVA design. Assumptions for ANOVA were tested and 
met for homogeneity of variance through the Bartlett test 
and visual inspection of residual plots for normality. Tank 
was initially included in the model as a random factor and 
pCO2 (ambient vs. high) and algal density (NA, LA, HA) 
were included as fixed factors. Tank factor was not signifi-
cant (p = 0.999) and was removed from the model, and sub-
sequently rerun as a two-way ANOVA with pCO2 and algal 

density as fixed factors, and calcification rate as the response 
variable.

Results and discussion

An emerging paradigm in coral reef research is that mac-
roalgae may provide refugia to corals and other calcifying 
species from the deleterious effects of OA, through the 
photosynthetic removal of  CO2 that elevates the pH of the 
surrounding microenvironment (Cornwall et al. 2013; Doo 
et al. 2020). However, we observed a trend that suggested 
no macroalgal buffering under OA, and contrary to previous 
studies on weedy acroporid species, there was no effect of 
pCO2 (up to ~ 1100 µatm) on A. millepora and A. hemp-
richii calcification rates in our study (Fig. 1)  (F1,100 = 2.92, 
p = 0.091; Table S2). Further, coral calcification decreased 
significantly by 41.8% in the experimental tanks with mac-
roalgae  (F2,100 = 18.22, p < 0.001; Table S2), while differ-
ences in coral calcification rate at various algal densities (LA 
vs. HA treatment groups) were not significantly different 
from each other (Fig. 1). There was no interaction between 
pCO2 and algal density  (F2,100 = 1.28, p = 0.284; Table S2). 
These patterns indicate that the mere presence of Sargas-
sum was detrimental to coral calcification, showing subtle 
complexities that influence coral–algal competition on cal-
cification rates that are independent of carbonate chemistry.

Many macroalgal species, including Sargassum used 
in this study, contain allelopathic chemical compounds 
which aid in protection against herbivory and competition 
(Budzałek et al. 2021), but may also result in coral bleaching 
(Rasher and Hay 2014; Vieira et al. 2016). Despite negative 
effects on coral calcification, no coral individuals exhibited 
visual bleaching at the end of the experiment. Macroalgae 
have the potential to negatively influence corals through both 
direct and indirect competitive mechanisms. For example, 
the close physical proximity of corals and macroalgae in the 
treatments may have increased competition for space and 
light, resulting in shading effects due to algal overgrowth 
and physical abrasions that could have affected polyp growth 
and mortality (McCook et al. 2001). While we could not 
determine the exact mechanism of how macroalgal interac-
tions with corals decreased calcification rate, the favorable 
conditions resulting in macroalgal growth over the course 
of the experiment may have resulted in decreased photosyn-
thetic rates thereby limiting calcification. However, it is clear 
that a negative interaction was present, which highlights that 
further work is needed to disentangle these mechanisms, 
specifically in regard to light availability.

A commonly observed scenario of ongoing climate 
change within tropical marine ecosystems is the shift from 
coral dominated communities to turf/macroalgal-domi-
nated alternate stable states (Hoegh-Guldberg et al. 2007; 
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Arias-González et al. 2017). Generally, fleshy macroalgal 
density is expected to increase under elevated pCO2 due 
to the potential for more substrate for photosynthesis to 
increase algal growth rates (Koch et al. 2013). However, 
in our study, growth rates of Sargassum increased by an 
average 37.7 ± 3.0 g (n = 12) across all treatments for the 
duration of the experiment but were not significantly differ-
ent between ambient and high pCO2 treatments  (F1,8 = 1.26, 
p = 0.295; Table S3). Furthermore, algal growth rates were 
~ 25 times greater in the HA compared to the LA treat-
ment group but they did not statistically differ  (F1,8 = 3.88, 
p = 0.084; Table S3), and there was no interaction between 
pCO2 treatments on algal growth rates  (F1,8 = 0.01, p = 0.910; 
Table S3). The Sargassum used in this study is a species 
which uses carbon concentrating mechanisms (CCMs) for 
 HCO3

− to  CO2 conversion (Kumar et al. 2017, 2020). As 
such, macroalgae with CCMs are not expected to benefit as 
much from increased  CO2 compared to those lacking CCMs 
(Kübler et al. 1999). The macroalgae used in this study are 
likely adapted to large natural fluxes in physicochemical 
conditions and presumably experienced optimal growth 
conditions in the tanks (continuous growth and no degrada-
tion of macroalgae was observed); thus, the addition of  CO2 
was not beneficial to growth rates. Additionally, corals in 
both high and low algal density treatments exhibited similar 
decreases in calcification, and these results could be because 
the chosen algal densities were not substantially different.

The Red Sea is characterized both by naturally high 
salinity (> 40.0 ppt) and high variation in temperatures, 
and the conditions at the collection site may fluctuate 
by several degrees each day (Safaie et al. 2018). These 

regions of naturally elevated seawater temperatures are 
also potential locations for coral–algal phase shifts (turf 
and macroalgal) to occur due to increased bleaching events 
(McManus and Polsenberg 2004). Although the presence 
of macroalgae decreased coral calcification in our experi-
ment regardless of algal density (Fong and Todd 2021), 
future research could provide valuable insights on these 
interactions by investigating potential tipping points where 
coral health is adversely affected by the proximity to mac-
roalgae. This is particularly crucial as further ecological 
processes such as reduced herbivory can also contribute to 
macroalgal dominance (Bozec et al. 2019). As coral reef 
ecosystems are facing escalating threats associated with 
climate change, the ecological trajectories (e.g., cover) of 
foundation species in degraded reefs is crucial to under-
stand. In our study, potential compensatory mechanisms 
(e.g., Leung et al. 2017) of Sargassum buffering of coral 
calcification rates in elevated pCO2 were not observed. Our 
results emphasize the need for a more holistic approach 
to understanding tipping points that encompasses bio-
diverse coral communities, and how changes in species 
interactions may be modulated in future multi-stressor 
environments.

Acknowledgements We thank CMR staff of KAUST for their sup-
port in their aquarium facility and Huajing Yan for aquarium mainte-
nance. This research was funded through the King Abdullah University 
of Science and Technology baseline of Hildegard Westphal.

Funding Open Access funding enabled and organized by CAUL and 
its Member Institutions.

Fig. 1  Rates of coral calci-
fication in the three different 
algal density regimes between 
ambient and elevated pCO2 
treatments. Figure indicates 
mean ± SE (n = 18, except low 
algal density under ambi-
ent pCO2 conditions n = 16), 
and different letters indicate 
significant differences between 
treatments
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